

An Examination of Wireless Media Streaming in a
Home Network Environment

By
Jay Kraut

A Thesis

Submitted to the Faculty of Graduate Studies
In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Manitoba
© May, 2005

Abstract

The amount of consumer electronics today has increased substantially. The average

home might have multiple VCRs, DVDs, PVRs and display devices. Increasingly, there

is a push towards building all in one devices as media servers and making them capable

of streaming media to various display devices in the home. At the same time, wireless

connectivity has improved considerably with the advent of the 802.11 standard.

The purpose of this thesis is to give a broad overview of how wireless media

streaming works. The 802.11 standard is examined through a custom made wireless

simulator. The development of media streaming software is achieved through using the

Microsoft DirectShow architecture. This thesis explains how both the simulator and

streaming software is developed, with an emphasis on software engineering issues. The

design of the software is comprehensively explained with the addition of code samples in

the main text to further the explanations.

The focus of this thesis is more on gaining an understanding of how media

streaming works rather than focusing on detailed experimentation with both 802.11 and

streaming media wirelessly. There are several test scenarios for both 802.11 using the

wireless simulator and media streaming, however these are more of an example of what

the software for this thesis can do rather then a scientific analysis.

This thesis should be useful for those interested in developing either wireless

network simulators or video streaming applications. As well it will be useful for those

who want a greater understanding of some of the issues discussed and perhaps some of

the software engineering issues such as component based architectures.

 ii

Acknowledgments

I would like to thank the people who helped me along the way and made it possible

to complete this thesis. First of all, I would like to thank my Advisor Prof. Bob McLeod

for being a great advisor and for teaching an excellent course on wireless network

simulators. I would like to thank TRLabs and NSERC for providing funding and again to

TRLabs for providing a great work environment and all the equipment required for doing

the testing. Much appreciation goes to Sergey Giterman for answering my many

questions via one of the tech forums and later for replying to my emails when I was first

learning about DirectShow. Also thank you to everyone in the Microsoft DirectShow

video forum who offered advice. Lastly I would like to thank both my sister and my

mother for doing the grammar check on the thesis.

 iii

Table of Contents

Abstract.. ii

Acknowledgments .. iii

Table of Contents ... iv

List of Figures.. vii

List of Tables .. ix

Chapter 1 Introduction ... 1

1.1 Problem Context ... 1
1.2 Scope... 2
1.3 Outline... 4

Chapter 2 Wireless Simulation Background............... 6

2.1 CSMA-CD .. 6
2.2 CSMA-CA .. 7
2.3 Software Architecture ... 12

2.3.1 Physical Layer... 17
2.3.2 NIC Layer ... 22
2.3.3 OS Layer ... 23
2.3.4 Process Layer .. 24
2.3.5 Network Layer .. 24
2.3.6 Storing Statistics ... 28

2.4 Application Programming Inteface... 29
2.4.1 Process Overrides.. 29
2.4.2 Event Overrides .. 30
2.4.3 Utility Function Calls.. 30
2.4.4 DNS services... 31
2.4.5 Timers ... 31
2.4.6 Socket Functionality ... 32
2.4.7 Network Setup Functions.. 33

Chapter 3 Wireless Simulation Experimentation..... 35

3.1 Verification of the simulator... 35
3.1.1 Bit Rate Test ... 35

 iv

3.1.2 Data Integrity Test .. 39
3.2 Simulator Experimentation ... 43

3.2.1 Effects of an Access Point .. 43
3.2.2 Wireless Simulation of 802.11 Media Streaming ... 47
3.2.3 Multiple Channel Experimentation... 53
3.2.4 Experimentation Conclusion... 58

Chapter 4 DirectShow Filters 60

4.1 Why Use DirectShow ... 60
4.2 Introduction to COM... 61
4.3 What is a DirectShow Filter.. 63
4.4 Graph Edit... 65
4.5 Filter Programming Example.. 69

4.5.1 Using the DirectShow SDK.. 70
4.5.2 The Memory Copy Filter .. 71

4.5.2.1 Basic Configuration .. 71
4.5.2.2 The Main Filter Class.. 72
4.5.2.3 Input/Output Pins .. 74
4.5.2.4 Summary of Creating a Filter ... 79

Chapter 5 Media Streaming Architecture................. 81

5.1 The Transport Layer ... 82
5.1.1 Software Architecture of the Transport Layer .. 84

5.1.1.1 Header Format .. 84
5.1.1.2 The Packetization Process... 86
5.1.1.3 Outgoing Buffer .. 89
5.1.1.4 The Incoming Buffer... 91

5.2 Server Architecture ... 94
5.2.1 The Main Window Class. ... 96
5.2.2 The DirectShow Filters ... 97
5.2.3 The DirectShow Manager ... 99
5.2.4 The Connection Manager.. 102
5.2.5 Outgoing Buffers .. 103
5.2.6 GUI, Console and Statistics .. 103

5.3 Client Architecture.. 104
5.3.1 The Main Window Class/Connection Manager.. 105
5.3.2 The DirectShow Filters ... 106

5.3.2.1 Media Synchronization ... 107
5.3.2.2 The Network Receiver .. 108
5.3.2.3 The Audio Filter.. 110

5.3.3 GUI and Statistics ... 113

Chapter 6 Wireless Video Streaming Experiments 114

6.1 The Network Test Utility .. 114
6.2 Basic Network Testing.. 119

 v

6.2.1 Ping Test ... 120
6.2.2 Bandwidth Test ... 121

6.3 Media Application Installation Instructions.. 123
6.3.1 Server Installation Instructions ... 123
6.3.2 Client Installation Instructions.. 124

6.4 Server and Client statistics.. 124
6.4.1 Server Statistics... 124
6.4.2 Client Statistics ... 125

6.5 Basic Video Streaming Properties .. 127
6.6 Bandwidth Stress Test... 129
6.7 Error Rate Contrast with 802.11b and 802.11g .. 132

6.7.1 801.11b with 1% Packet Loss Rate... 133
6.7.2 802.11 with 5% Packet Loss Rate... 134
6.7.3 802.11g with Varied Packet Drop Rate .. 136
6.7.4 Simulated Packet Drop Conclusions... 139

Chapter 7 Conclusions .. 140

7.1 Summary ... 140
7.2 Recommendations for Future Work.. 142

References.. 144

 vi

List of Figures

Figure 2-1 Hidden station problem... 8
Figure 2-2 CDMA-CA example ... 10
Figure 2-3 Architecture showing multiple channels... 13
Figure 2-4 Architecture with one channel but detailed interactions 14
Figure 3-1 Verification test GUI... 38
Figure 3-2 Verification results .. 39
Figure 3-3 Test Setup 1... 44
Figure 3-4 Test setup 2 ... 44
Figure 3-5 Number of resends VS network load .. 44
Figure 3-6 Data rate VS network load .. 45
Figure 3-7 Wait time VS network load... 45
Figure 3-8 Collision rate VS network load ... 45
Figure 3-9 Percentage of played frames ... 51
Figure 3-10 Percentage of played frames no fragmentation... 51
Figure 3-11 Buffer size ... 52
Figure 3-12 Run length ... 52
Figure 3-13 Data bit rate for five channels, smallest buffer selection 54
Figure 3-14 Wait time, smallest buffer selection.. 54
Figure 3-15 Number of resends, smallest buffer selection ... 54
Figure 3-16 Data bit rate random selection... 55
Figure 3-17 Wait time, random selection ... 55
Figure 3-18 Number of resends, random selection.. 56
Figure 3-19 Wait time for different BER.. 57
Figure 3-20 Number of Resends, different BER .. 57
Figure 3-21 BER vs Percentage load .. 57
Figure 3-22 Total data rate of selection algorithms .. 58
Figure 4-1 Graph Edit example... 66
Figure 4-2 Graph edit playing example .. 67
Figure 4-3 Memory copy test graph.. 68
Figure 4-4 Changing the settings example.. 68
Figure 5-1 General architecture .. 82
Figure 5-2 Packetizing class ... 87
Figure 5-3 Server filter graph ... 99
Figure 5-4 Server GUI .. 103
Figure 5-5 Client graph... 106
Figure 5-6 The player.. 113
Figure 6-1 Ping mode.. 115
Figure 6-2 Ping test operation... 116
Figure 6-3 Bandwidth test setup ... 117
Figure 6-4 Bandwidth Test ... 118
Figure 6-5 Windows network activity .. 119
Figure 6-6 Network test maximum bandwidth ... 119
Figure 6-7 Throughput vs packet size 1.. 122

 vii

Figure 6-8 Throughput vs packet size 2.. 123
Figure 6-9 Video quality bit rates ... 129
Figure 6-10 90% quality bit rate ... 129
Figure 6-11 Difference in sending and receiving bytes .. 130
Figure 6-12 Missing video frames .. 132
Figure 6-13 Total simulated drops per second (11 Mbps 1%).. 133
Figure 6-14 Total video frames missing (11 Mbps 1%) ... 134
Figure 6-15 Total video frames missing (11 Mbps 5%) ... 135
Figure 6-16 Total audio frames missing (11 Mbps 5%) ... 135
Figure 6-17 Total video frames missing (54 Mbps 1%) ... 136
Figure 6-18 Total video frames missing (54 Mbps, 5%) .. 136
Figure 6-19 Total Client Bytes per second (54 Mbps 20%) ... 138
Figure 6-20 Total Simulated drops per second (54 Mbps, 20%).................................... 138
Figure 6-21 Total video frames missing (54 Mbps, 20%) .. 138

 viii

List of Tables

Table 6-1 Ping test average results ... 121
Table 6-2 Bandwidth test .. 121
Table 6-3 Theoretical maximum bandwidth... 122
Table 6-4 Loss rate VS Missing frames.. 137

 ix

Chapter 1 Introduction

1.1 Problem Context

There is an increasing amount of convergence in the home entertainment electronics

industry. There are both technological and marketing reasons for this. Advances in

compression technology, coupled with lower costs and standardization of integrated

computing devices, has enabled the development of all-in-one devices. On the demand

front, with the average home having multiple media devices such as DVDs, computers,

gaming consoles and stereos, there is an increasing need to have them all interconnect

seamlessly. Currently, there are many manufactures such as Sony, Samsung and Creative

that are manufacturing devices that are multifunctional. However, these devices are still

relatively immature and it is uncertain what the home electronics market will look like in

the future.

One thing that is certain to happen in the future, is an increase in the reliance on

wireless networks instead of wired ones. Wireless networks are slower but have

advantages. Wireless networks eliminate much of the clutter of connecting an increasing

number of devices with wires. Also, wireless networks provide added mobility, which is

practical for devices such as laptops, and other portable media devices.

The streaming of media (both audio and video) to one or many wireless displays is

becoming more common. If bandwidth is unlimited, and bit error rate negligible then

reliable streaming is relatively easy to implement. However, as the bit rate increases with

higher quality video formats for example HDTV maintaining a high Quality of Service

 1

(QoS) becomes difficult. This project looks at issues with streaming media over a

wireless home network.

1.2 Scope

This thesis seeks to answer the following research question: Fundamentally, how

does wireless media streaming work? The context of this question is in the application of

streaming media in a home network environment. That is, there is a media server in a

home that is streaming media through an access point to video and audio displays that are

connected wirelessly via the access point.

The thesis is restricted to current technologies. It is possible to increase the

efficiency of a wireless standard by customizing it to specific applications. However

hardware implementation of a new wireless standard is quite difficult and beyond the

scope of this thesis. This means that the wireless devices used for this thesis are

restricted to ones available as this thesis is written (802.11 a,b,g). However there is an

explanation on how wireless works from the media access control (MAC) layer and up

this is done to examine any MAC issues that may affect how to program in the transport

layer effectively.

To compensate for the use of pre-existing standards and to give greater insight into

how a wireless network affects media streaming, a modifiable wireless simulator is

developed. The wireless simulator is made to reproduce the results of experimentation

with streaming software to give a greater insight into what is happening under heavy

network traffic. It also has the capability to simulate multiple channels to take a look

future wireless standards. This simulator is “real time” and event based, similar to other

simulators available today such as NS2 [NS204] and J-Sim [JSIM04]. It can run real

 2

applications over the network instead of simulated traffic, which makes the results more

realistic [AhDa96] [FPJF03][HuKH04][Tyan02]. Other features are data integrity that

allows a mock ftp program that correctly sends data over the network and that the

simulator supports multiple transmission channels over a network. Even though other

network simulators are available, the simulator is developed for this project because it is

simple to use, easily modifiable and has provided a great learning experience.

The original goal of this thesis is to create a small custom wireless media streaming

box. This box would be able to accept analog video and audio input, compress it, and

then stream it to a second box. The second box would decompress the stream and output

it to a video monitor and audio speakers. Early on it is found that to create a compact box

that fits the home media image is unrealistic. This would involve doing a lot of work

with prototyping hardware, which is too expensive and time consuming for this thesis.

The first design decision is to use off the shelf hardware namely two personal computers

(PCs). The second design decision is to use current software technologies. A full custom

programmed media streaming application including encoders and decoders is unrealistic

to be implemented as a master’s thesis. This thesis instead takes advantage of existing

software technologies from Microsoft and concentrates on implementing all of the

transport layer functionality.

The goal of the thesis is not to create commercial quality streaming software. There

are many software vendors that provide streaming solutions based on similar

architectures to the one used in the thesis (e.g. [Micro04]). There are also free versions

available under Linux that are somewhat different (e.g. [ViLa04]). The goal of the thesis

is to provide a basic understanding of how wireless streaming works all the way from the

 3

software architecture level, down to the MAC level on the wireless network. The thesis

provides a background in each subject and sample code that can be reapplied when

developing media streaming devices. The media streaming software can also be used to

test different hypothetical scenarios under different network conditions.

1.3 Outline

As much as possible, full explanations are provided starting from software

architecture to detailed explanations of the actual code. Some sections in the thesis are

written in tutorial style, many of them containing code snippets that are provided to

further the understanding of the material in a given section. Care is also taken to explain

software engineering issues especially those involving the simulator architecture with its

easy to program API and the design of the media streaming application.

Chapter 2 introduces the wireless simulator. First, an overview of how 802.11 works

is described in sections 2.1 and 2.2. Next, the simulator architecture is described in

section 2.3. Section 2.4 discusses how to program applications for the simulator.

Chapter 3 discusses the simulation experimentation. It starts with some

experimentation to verify that the simulator is working correctly which is presented in

section 3.1, and which provides some sample code to show how simple it is to program

the simulator. Section 3.2 contains several experiments. The experiments are not wholly

intended to provide directly applicable results. The section has the dual purpose to show

what can be done in the simulator and to show how it is possible for hardware developers

to first test custom wireless standards to verify the properties before spending the time to

implement them in hardware.

 4

Chapter 4 starts the discussion on media streaming application software. Care is

taken to introduce the Microsoft architecture in sections 4.1 to 4.4, which can be a

difficult topic for novices. Section 4.5 further describes Directshow by illustrating a very

common example.

Chapter 5 discusses the software architecture used to stream media. It is divided into

three main sections. Section 5.1 discusses the transport layer, which is in both the server

and the client and is the heart of this thesis. Section 5.2 discusses the server architecture,

and section 5.3, the client architecture.

Chapter 6 describes the experiments done using the media streaming software. It

starts by introducing one additional software utility to test a network. It follows with

instructions on how to install the server and the client applications. Two hypothetical

scenarios, one when the bandwidth of the network is completely used up and other with

high packet loss rates, are evaluated using the media streaming software.

Chapter 7 provides a summary of the thesis and emphasizes some of the more

important points.

 5

Chapter 2 Wireless Simulation Background

2.1 CSMA-CD

Carrier Sense Multiple Access – Collision detection (CSMA-CD) is a protocol that

allows multiple devices to share a single channel. It is the protocol used for the physical

layer of 802.3 Local Area Network (LAN) connections when multiple devices are

connected to the same transmission medium rather then hooked up to a hub or router.

The protocol is best explained by describing its operation by example. When a

device has a packet to transmit, it monitors the transmission channel and waits until the

channel is idle. When the channel becomes idle the device starts transmitting the packet

on the channel. Once a device starts transmitting, if it detects that there is no other device

attempting to transmit within two propagation delays it knows it has control of the

channel and continues to transmit. After two propagation delays, it is guaranteed that all

other devices on the network realize the device is transmitting and won’t interfere.

However, if another device starts transmitting before it detects the first device’s

transmission (this is possible within one propagation delay) there will be a collision. At

this point both devices are listening to the channel and realize the data on the channel is

not the same as what they are transmitting so both devices acknowledge that some other

device is attempting to transmit. As soon as this occurs, both devices transmit a short

jamming signal and cease to transmit. The devices then set a back off timer to wait

before attempting to transmit again. How this back off time is generated is crucial to the

proper operation of the network. If both devices are conFigured to immediately begin

retransmitting right after a collision there will never be a time when both devices will be

 6

able to transmit. However, if the back off time is too large the network will be

inefficient.

There are several attributes that a CSMA-CD network has. The first is a maximum

bit rate. The maximum bit rate is the total number of bits that can be transmitted on a

channel per a time period. This is the maximum theoretically possible rate and is not

achievable if more then one device is sharing a channel. Another important attribute is

the minislot time. This time is specified as twice the propagation delay. The minislot

time determines the smallest packet size. If a packet is smaller then the minislot time

there is a possibility that even if there is a collision, the transmitting device will assume

the transmission was successful because it won’t be able to detect the collision. Lastly,

the network has a maximum packet size and a back off algorithm, both of which can be

changed to maximize efficiency. An example of a back off algorithm that is commonly

used is the 2k – 1 back off algorithm. The back off time after a collision is determined by

taking a random number between 0 and 2k – 1 where k is the number of retransmitting

attempts, limited to a maximum of 10.

2.2 CSMA-CA

There are many differences between the protocols for wireless and wired network

connection. Wireless transmission provides a less a controlled environment then wired

transmission. 802.11 defines the wireless transmission standard [Bren97] [IEEE99]

[Nede01]. It contains provisions for specifying the physical transmission, authentication,

encryption, power mode, roaming capabilities and other characteristics. The scope of this

 7

project only focuses on the transmission of data in a unchanging environment, where

the number of stations is fixed and an access point exists.

In a wired LAN, CSMA-CD is used as the protocol. It is a good choice giving good

efficiency especially for large data and being fair in terms of letting multiple devices have

access to the channel. However, for a wireless environment it is not suitable for the

following reasons:

1) The hidden station problem. This is illustrated by Figure 2-1. If station A

transmits, station B is able to listen to the transmission but station C cannot

because it is out of range. Because of this, station C can transmit if it has data to

send and thus interferes with stations A’s transmission.

Station CStation BStation A

Figure 2-1 Hidden station problem

2) It is difficult to detect collisions in a radio environment. Also it is more expensive

to build a device that can both transmit and receive back the single so it can check

the integrity of the transmission. It may not be possible for the transmitter device

to notice an error and stop transmitting.

 8

3) For a given LAN setup, a station may not have complete control of the channel.

There may be other devices on the same channel forming another LAN.

Because of these problems wireless Ethernet uses CSMA-CA, which is Carrier-Sense

Multiple Access with Collision Avoidance. To coordinate its operation, CSMA-CA

defines four kinds of Inter Frame Spaces. An Inter Frame Space (IFS) specifies the time

between two transmissions. It is required to prioritize transmissions:

1) SIFS, Short interframe space. This is the smallest interframe space. It is

necessary after a transmission for the wireless device to process the data and

switch modes between receiving and transmitting if necessary. This actual time

for 802.11 is around 28 uS.

2) PIFS, Point Coordinate IFS. This is the time after which the access point is able

to get access to the channel without having to compete with all the other devices.

This can be used to do access point functionality such as sending out beacons. It

is defined as SIFS + 1 Slot time which is around 28+50 = 78 uS for 802.11.

3) DIFS, Distributed IFS is the minimum time after a transmission of a message

which the stations can again start transmitting messages. It is defined as PIFS + 1

slot time = 132 uS.

4) EIFS, Extended IFS, is used when a carrier has received a packet it does not

understand and should be kept from transmitting. EIFS is not used in any of the

discussions in this thesis.

 9

Channel

NAV

NAV

NAV NAV

DIFSSIFS SIFS SIFS DIFSDIFSSIFS SIFS SIFS

ACK

Data

CTS

RTS ACK

Data

CTS

RTS

Access Point

Other Device

Destination

Source

Figure 2-2 CDMA-CA example

The operation of CSMA-CA is illustrated in Figure 2-2. It demonstrates the procedure to

transmit a packet from a source to a destination going through the access point. A

transmission begins when a source sensing that the channel is idle after having its back

off timer run to zero. It starts by sending a Request to Send (RTS) frame. If no other

station is transmitting, the access point may successfully receive the frame. At this point

the access point sends out a Clear to Send (CTS). Once received the source sends out the

data frame. The access point acknowledges it with an acknowledgment (ACK) frame,

and the transmission of the data frame is confirmed as being successful. Next the access

point waits for the next available time to send and then using the same procedure sends

the data frame to the destination.

CSMA-CA uses virtual carrier sensing. In the RTS and CTS frames, the time that is

required to complete the transmission to the ACK frame is included in the header as the

 10

Network Allocation Vector (NAV). This solves the hidden station problem. That

station might not be able to detect the RTS or any subsequent transmission from the

source, however, it will detect the CTS frame. At this point it reads the NAV and will

not try to send until this time runs out.

The example in Figure 2-2 illustrates a transmission between two stations using an

access point. This style of transmission requires station-to-station traffic to be sent twice

which is inefficient. It is also possible for an ad-hoc network to be created which

operates without the need for an access point. In such a network transmissions are sent

peer to peer without having to be sent twice. Despite station-to-station traffic having to

be sent twice, the access point scenario is the most common. The access point is also

likely to be connected to the wired network with Internet and server connections. In

many environments most of the traffic on the network is likely to go from access point to

a station or vice versa rather then station to station.

Like CSMA-CD, CSMA-CA contains a back off algorithm. It is very similar and the

formula to determine the time is given by 2k + 2. There is a maximum of 16 resend

attempts before a packet is dropped.

It is possible for a wireless network to be conFigured with an RTS threshold. The

RTS threshold is a size at which, if the data packet is smaller, the data packet can be sent

without the RTS, CTS overhead. The reason behind the RTS and CTS is due to the fact

that during a transmission, it is not possible to detect collisions and bit errors. When the

RTS and CTS packets are a lot smaller then the data frame it makes sense to use them

because if there is a collision, only the bandwidth for the smaller frames will be wasted

rather then having the data frame take up a lot of time on the channel although it can not

 11

be sent successfully. When the data packet is small it may not make sense to bother

with the overhead of the CTS and RTS packets.

Wireless networks typically contain a higher bit error rate than wired networks.

However, they contain an automatic mechanism to resend lost packets. When the ACK

frame is not received by the source station it can assume that the data frame was lost and

that it should retransmit the data.

2.3 Software Architecture

The simulator software architecture is designed using object oriented programming

with each component of the network stack being its own class in a fasion similar to J-Sim

[JSIM04]. This allows for future modifications where different components can be

swapped in and out for different types of networks. The simulator is run as a single

thread and uses its own clock for timing. Although the simulation is coded is Visual C++

for Windows the only Windows specific elements are the user interface and the single

thread that is used to run the simulation. Visual C++ is chosen over other languages such

as Java because network simulators are processor intensive and c++ in network

simulations is found to be ten times faster then Java [Nico02].

To be realistic, the network simulation is run on a clock. The physical layer clock

(e.g at 11 mbits) is the clock used to time the network. This does not mean that the

simulator has a loop that runs 11 million times for each second of execution. To speed

things up, the simulation uses an event driven architecture. This means that rather than

simulating every fraction of a second the main loop uses event based execution. An

example of this is when transmitting a packet. Once it is verified that the device can

 12

transmit successfully, the simulation clock is simply advanced by an amount equal to

the time required for the packet transmission. When there is nothing to transmit, the

simulator advances to the next instance where it releases control to the processes.

The simulator has some advanced features. The simulator is designed as a virtual

network meaning it allows for complete client server applications that can be run as

separate processes and actually send data through the simulated network. The simulator

ensures data integrity so it is possible to send complete files through the virtual network

and the sent files will be the same as the original files. The simulator also allows for

multiple channels to be used. Multiple channels can be used to simulate future versions

of 802.11, using more than one channel at the same time to transmit packets.

To NICs (channel 0,1) NIC (channel 1)

Physical Layer (channel 1)

… …

Physical Layer (channel 0)

NIC (channel 0)

OS

Process ProcessProcess

Network

Figure 2-3 Architecture showing multiple channels

 13

Contains the necessary virtual functions to
simulate an actual process such as Init, Run
and Message sent/received functions to allow
real application to be run in the network

Physical Layer

Polls the NICs for data when idle and performs collision detection.
Accepts data from the NIC when no contention and routes this data to
the proper destination NIC.
Advances the clock of the simulation

For outgoing packet the NIC notifies physical layer that a packet is
available and copies over the data when required
NIC accepts incoming data

Has logic to perform RTS-CTS-Data-ACK sequence

OS Fills ingoing and NIC fill outgoing packets

Packets outgoing messages

NIC

Gives each process execution time

Create Sockets
Send messages
Receive Events (message send, message received

OS

Process Process
Process

Network

Figure 2-4 Architecture with one channel but detailed interactions

The organization of the architecture is shown in Figure 2-3 and Figure 2-4. Figure 2-

3 shows an example of the architecture with multiple processes and 2 channels. The

number of channels and processes can be changed to any quantity. Figure 2-4 is a more

detailed Figure that shows the interaction between the classes of the simulation, but does

not show the multiple channels.

Figure 2-4 shows the interactions between each layer in the simulation. Each layer is

its own class. The network class contains processes, each of which represent a stand

 14

alone computer. The simulation runs a loop in a single thread by alternatively giving

the physical layer component run time and then giving processes run time. The processes

generate packets that are first sent to the Operating System (OS) component. The OS

component adds a layer of headers and then selects (if more then one channel) a Network

Interface Card (NIC) component and sends that packet to the NIC. Then another layer of

headers are added. When the physical layers runs, it checks each NIC to see if it has data

ready. If it does and if there are no collisions, it copies the packet from the source NIC to

the destination NIC. The packet propagates up the NIC to the OS, which then triggers an

event in the process telling the process that the packet is ready. The process then can

read the packet and send a reply if necessary.

The overall architecture looks a lot like how a computer on a network is organized.

This is not an accident. There are two reasons for this, software engineering and realism.

One of the main goals of software engineering is maintainability of code. When

designing large programs it is best to separate the code into various classes that resemble

different logical functions of the overall program. Each class should be a black box with

well defined input and output. An internal change in one of the classes should not affect

the other. If it would, it would create a debugging nightmare, in which one change might

affect another and so on. The best example of the merit of using this approach in my

system is the multiple channel addition. The simulation was not intended to support

multiple channels when it was first conceived. However, because the simulator is

modular, it is very easy to add the multiple channels by simply adding as many physical

layers as desired, and having each OS support multiple NICs, one for each physical layer.

 15

The other reason for this software architecture is realism. It is desired that this

simulation be as close to the real thing as possible. This means that having actual traffic

sennt over the simulation is desired. To do this it must be possible to write programs that

can run on the simulation. This requires that there must be an Application Program

Interface (API) and that data integrity must be maintained in the simulation. Using this

architecture makes it easier to implement the API.

The realism is further enhanced with the simple model, complex behavior ideology.

Each class in the simulation is not too complex and does not contain too many functions.

However, each class closely resembles the actual functionality of the device it is

emulating. This allows for natural complex behavior to occur without having to hardcode

it. An example of this is what happens when a CTS packet is not received. Once the

DIFS is passed, after the CTS is supposed to arrive, the channel becomes open again to

retry. Rather then having to program this explicitly in one monolithic (complex)

sequence it occurs naturally thought a number of simple interactions.

The following sections provide a more detailed look into how the simulation works

internally. The section is split into three different areas. The first is how packets are sent

over the network using the CSMA-CA, RTS-CTS-Data-ACK procedure. The physical

layer acts to send the packets without knowledge of their format, while the NIC provides

the RTS-CTS-Data-ACK state machine and follows the necessary procedures to send

packets. The NIC class also has the option to become an access point. In the second area

the OS and Processes class that are responsible for creating the API, that allow for

processes to generate realistic traffic are discussed. The third area covered is the

Network class, which is responsible for the overall execution of the experiments. It

 16

allows for incremental experimentation to be easily done, such as increasing the traffic

over a number of runs and storing the statistics of each run to see the effects.

2.3.1 Physical Layer

The Physical layer is implemented in a base class that provides basic functionality,

plus an child class, that provides the specific functionality of CSMA-CA. The physical

layer performs the following functionality:

1) The physical layer provides the main clock of the simulation. It is responsible for

all of the timing.

2) Generates bit errors according to a bit error rate function

3) Set up the event that gathers statistics

4) Copy packets from one NIC to another.

The base class provides functionality that is common to any physical layer

implementation. To query if the device has a packet to send, the physical layer needs to

know every device that is connected to it. It contains the functions RegisterAP(NIC

*pNIC) and RegisterNIC(NIC *pNIC) depending if the NIC is conFigured as an access

point or not. These functions allow each NIC class to register with the physical layer.

The function SetBER(int ber) is used to set the bit error rate of the channel, while

CheckBitErrors() is used to decide if the packet is to have a bit error. The function uses

random numbers generated from the standard generator and the packet size to determine

if the packet is to have a bit error. There are more complex error models possible such

as, burst errors and error models for moving stations [HBEI01] but a simple function is

 17

sufficient for this thesis. By encapsulating the bit error rate functionality into two

functions it is relatively easy to add a more complex bit error function such as one that is

variable and changes over time. The class also contains the helper function,

GenerateStatistics(), which is used to gather the statistics for an instance in time. It also

contains the helper function IncrementTime(int uSeconds), which is used to advance the

clock a certain amount of microseconds.

In order for the data to be actually sent, the SendData() function is used to copy the

data from one NIC to another. This function makes use of the fact that the packets are

framed with a header similar to the header used for the physical layer in 802.11. The

header contains the following structure.

#define RTSFrame 01
#define CTSFrame 02
#define ACKFrame 03
#define DataFrame 04
#define FRAMECONTROL int
enum LANTYPE {BroadcastType, ConnectionType};
struct LANINFO
{
 FRAMECONTROL FrameControl;
 MACTYPE SourceMac;
 MACTYPE DestMac;
 MACTYPE TrueDestMac; // the true destination
 LANTYPE LanType;
};

The header contains the frame type, and 3 MAC addresses. There are three because

of the access point functionality. There are two options when sending a packet, to either

send it ad-hoc or to send it through the access point. When sending it through the access

point the frame contains two destinations, the true destination of the packet plus the

access point MAC address, to which the packet is sent to first.

The SendData() function is as follows:

void PhysicalLayer::SendData()
{
 CheckPacketType()

 for (int ix = 0; ix < m_NumNIC; ix++) {
 MACTYPE MacAddress = m_aNIC[ix]->GetMacAddress();
 if (MacAddress !=SourceMac) {

 18

 if (LanInfo.LanType == BroadcastType)
 m_aNIC[ix]->SendData(m_CurrPacket,m_nCurrPacketSize);
 else if (LanInfo.LanType == ConnectionType)
 if (MacAddress ==DestMac)

 m_aNIC[ix]->SendData(m_CurrPacket,m_nCurrPacketSize);
 }

 }
}

The function first finds out the type of the packet. It then checks every NIC to see if

it is the destination. If the packet is a broadcast type every NIC gets the packet.

Otherwise only the destination NIC gets the packet. This is slightly different from how it

works in reality, as every NIC on a shared channel gets every packet and those that the

packet is not destined for simply discard it. However for simulation it is quicker if only

the NIC that is supposed to get the packet does as it saves a lot of processing.

The child class provides most of the physical layers functionality. This is because

there is support for changing the physical layer from CSMA-CA to CSMA-CD if

required. The inherited class has only two functions: Run() and GetNextPacket().

Understanding these functions is integral to understanding how the simulation works.

The simulation is run in a single thread. In the thread, the physical layer’s Run() function

is called while the thread loops repeatedly. The physical layer’s Run() function runs for a

certain quantity of time before returning, thus allowing for the processes to run. This

quantity of time should be set to an intermediate value based on the speed of the physical

layer. A larger time means that the simulation will be faster but less accurate. A smaller

time means that the simulation will be slower but more accurate and approach the

accuracy of a simulation that is not event based. In this case, the quantity of time is set to

1 millisecond as that is around the scheduling period of most operating systems.

The accuracy degrades when using multiple channels. When using multiple

channels, a message may be sent over one channel and its reply in the other. However,

 19

because the channels are run for one quanta (a discrete quantity of time that a process or

function is allocated), one after the other, the reply will not be received until the second

channel gets its quanta. This means that the send-reply process on multiple channels is

slowed down to one message per quanta rather then the possibility of it occurring several

times within one quanta. Other than reducing the quanta size, which would slow

everything down, the API programming could be made aware of this and send replies on

the same channel as the original message. A far more complicated system of altering

quanta size based on traffic could be used to alleviate this situation but it is not in the

scope of this project.

void CSMACA::Run()
{

// while we still can do operations before giving up control
 while (m_CurrBitTick < m_CurrBitQuanta)
 {
 if (m_bPacketToSend)
 {
 if ((m_nCurrPacketSize - m_nCurrPacket) > BytesLeft)
 {
 // only send some of it

m_nCurrPacket += BytesLeft;
 }
 else
 {
 m_bPacketToSend = false;

 m_CurrBitTick += (m_nCurrPacketSize - m_nCurrPacket)*8;
 SendData(); // actual send the data to the other devices

 }

 }
 else
 {
 if (!GetNextPacket())
 m_CurrBitTick = m_CurrBitQuanta;
 }

 if (m_CGenStatsTime == m_GenStatsTime)
 {
 // generate statistics
 m_StatsNumTimes++;
 GenerateStatistics();
 m_CGenStatsTime = 0;
 }

}

 20

The Run() function loops until its quantity of time is up. When it has idle time the

function checks to see if there are any packets to send. If none of the NICs have any

packets ready, the function can exit. If there is a packet ready the function will send it. If

there is not enough time to send it, meaning that the time would exceed the quanta length,

the function sends as much of it as possible by subtracting the size of the packet, and then

in the next quanta the packet will be fully sent. That is the loop stops at exactly the time

that its time is up, rather then running until the last message is fully sent.

The GetNextPacket() works with NIC functionality to see if any NICs have a packet

to send. The code is long and complex so only a simplified algorithm is shown:

1) IncrementTime(SIFS) This is the function call to increment the time clock by a

SIFS.

2) Check to see if any NICs have anyhing to send within the SIFS.

3) If still nothing to send IncrementTime(PIFS-SIFS).

4) Check the access point to see if it has something to send

5) If still nothing to send IncrementTime(DIFS-PIFS).

6) Query each NIC to see if it has something to send and at what time it wants to

send it.

7) If there are none, there is nothing to send at this time, returns false.

8) If there is only one then that NIC is able to send the packet, return true.

9) If there are two or more NICs that want to send within the same slot time then

there is a collision, inform them of the collision which activates their back off

timers and keep on checking the NICs if any others want to send.

 21

2.3.2 NIC Layer

The NIC class interacts with the physical layer and the OS classes. It acts as the

intermediary. To interact with the OS it contains the function EnterData(char *Buffer,

int &nBufferLen), which allows the OS to copy data to the NIC in order to send it. To

interact with the physical layer the NIC class contains several functions that the physical

layer calls while it is running. DataToSend() is called by the physical layer to see if the

NIC has a packet that it wants to send. The function returns the time at which the NIC

wants to send it, from 0 to the maximum of the backoff timer. DecrementBackoff(), is

used by the physical layer to decrement the backoff timer. The NIC also contains the

utility function GetBackoffFrames(int Resends). This function encapsulates all of the

back off algorithm calculations. To change the back off algorithm only this function

needs to be changed.

The major function in this class is SendData(char *Buffer, int nBufferLen). This

function is the one that the physical layer uses to notify that the NIC has received a

packet. It is complex because it is responsible for the RTS-CTS-Data-ACK state

machine, and access point functionality. The algorithm is as follows:

1) If a RTS frame is received, generate a CTS frame that is to be sent and prioritize it

to be sent after a SIFS has occurred rather then a DIFS.

2) If a CTS frame is received, then queue up a data frame to be sent after a SIFS.

3) If an ACK frame is received, then call ConfirmPacketSent(LANINFO LanInfo,

IPINFO IPInfo) which among other things tells the OS that the packet has been

successfully sent.

 22

4) If a data frame is received, check if it is addressed to the current NIC as the end

point or as a relay to be repeated as the access point. The NIC has to be enabled

as the access point in order to repeat the message.

5) If the NIC is the access point, change a few things in the message header and add

it to the access point queue to be sent out.

6) If the NIC is the end point pass the packet up to the OS.

2.3.3 OS Layer

The OS layer is responsible for providing an API that is used when programming

processes. It uses datagram sockets with a Transmission Control Protocol (TCP) like

option for fragmenting. It supports fragmenting because a lot of the simulations send

large packets and it is easier to write in the fragmenting code once in the OS level rather

then having it written into every process.

The OS functionality looks a lot like a conventional OS. Examples are the following

function calls, which are described later in the API section:

int OS::CreateSocket(int PortNumber, SOCKETTYPE SocketType, Process *pProcess)
int OS::Receive(int Socket, char *lpBuf, int nBufLen)
bool OS::SendTo(int Socket, int DestIP, char *lpBuf, int nBufLen)
void OS::SetSockOpt(int Socket, int Option)

The OS supports one additional feature. It supports multiple channels. In order to

do this the OS creates multiple instances of the NIC class. Each NIC is assigned to a

different physical channel. In order to choose which channel is selected the

PickChannel() function is used. This is described in more detail in the experimentation

section.

 23

2.3.4 Process Layer

To program a process the Process class must be overridden. This class contains

virtual functions that interact with other classes that provide the feel of operating in a real

OS. A virtual function is one that is implemented in a base class such that when the base

class is inherited, the function can be overridden by the inheriting classes. Virtual

functions are necessary in message passing because the compiler needs to know that the

virtual function exists somewhere. If the inheriting class does not override it, it calls the

base class’s version. This allows the base class to have access to potential useful

functionality of the inheriting class. Examples of these functions are as follows:

virtual void OnMessageReceived(int SourceIP, int Port){};
virtual void OnMessageSent(int Port);
virtual void OnSaveStats() {}; // called once a second to generate stats
virtual void Run();
virtual void Init(); // called to do basic init (e.g setup the IP)
virtual void OnStart() {};
virtual void UserDrawStats(CDC *pDC, CPoint Offset, CPoint &Size);

OnMessageReceived and OnMessageSent have direct links to the physical layer.

When a message is sent or received, an event (actually functions calling each other) is

sent up the class hierarchy. At the end of this hierarchy the OS uses its process pointer to

call the virtual functions which if implemented will perform user functionality. The other

virtual functions are implemented similarly from different parts of the class hierarchy.

The network layer calls many of the other process layer functions such as Run and

OnStart.

2.3.5 Network Layer

The network layer is responsible for Domain Name Server (DNS) services,

initialization, and running the simulation. The simulator supports simple DNS to make

 24

the application programming easier. The network layer has two functions to do this,

IPTYPE DNSFindAddress(char *Name), and IPTYPE DNSGetIPAddress(char *&Name).

DNSGetIPAddress adds a name to the DNS and returns the IP address. If the name is

already there it returns a slightly modified name. DNSFindAddress returns the IP address

given a name.

The simulator is a Windows application that uses the MFC (Microsoft Foundation

Classes), including the way MFC handles threading. The simulation code consists of a

single thread. The function SimulatorThread is shown below:

UINT CChildView::SimulatorThread(LPVOID lpInfo)
{
 THREADINFO *ThreadInfo = (THREADINFO *)lpInfo;
 DWORD SleepIn = 200; // sleeps every 200 ticks

 DWORD StartCount = GetTickCount();

 while (!ThreadInfo->EndSimThread)
 {
 for (int ix = 0; ix < 100; ix++)
 {
 ThreadInfo->ParentPtr->m_pNetwork->Run();
 }
 DWORD EndCount = GetTickCount();
 if (EndCount - StartCount >= SleepIn)
 {
 ThreadInfo->ParentPtr->Invalidate(false);
 ThreadInfo->ParentPtr->UpdateWindow();
 Sleep(25); // give up some time for user input
 StartCount = GetTickCount();
 }
 // check if the network still should run
 if (!ThreadInfo->ParentPtr->m_pNetwork->RunTestingCycle())
 {
 ThreadInfo->EndSimThread = true;
 ThreadInfo->ParentPtr->Invalidate(false);
 }

 }
 return 0;
}

The function is launched when the simulator is told to start, and ends either on user

input or when the simulation has completed running its experiments. It has one

interesting feature and that is that the thread runs continuously up to a time period

defined by the variable SleepIn. SleepIn defines the number of milliseconds the

 25

simulation should run until sleeping. In Windows it is important for a thread to sleep

every now and then in order that control can return to the user. If the thread does not

sleep it can appear that the system is locked up.

The network layer class provides the Run function, which is called from the

Windows thread. The Run function first gives each physical layer control. The physical

layer will run until its quantity of time is up. At that point each process is given control.

Note that both functions contained in Run are non blocking and return fairly quickly.

void Network::Run()
{
 // first thing to do is run the physical layers
 for (int ix = 0; ix < NUMCHANNELS; ix++)
 {
 if (pPhysicalLayer[ix] != NULL)
 pPhysicalLayer[ix]->Run();
 }

 // next run all of the process (e.g)
 for (ix = 0; ix < m_NumProcesses; ix++)
 {
 m_aProcess[ix]->Run();
 }

}

Each process on the network is run at a fraction of the main clock, at intervals of

approximately 1ms. The physical layer loop runs at a large multiple of the main clock

before letting the processes run. This can potentially lead to a large problem. In a real

network all the devices are operating on their own clocks, thus they are completely

independent. With all of the process on the same clock, synchronization could occur that

could invalidate the simulation. An example of this occurring is, if there are several

servers on the network that transmit several packets a second. If the servers are all

synchronized, far more collision occur if they were not synchronized. In order to avoid

this situation a certain amount of randomness is introduced. When queuing up a packet

in the NIC layer, the NIC can add a small amount of random time. This means that

 26

although all of the processes are running on the same clock they are all randomly out of

phase with each other.

The network layer class supports two kinds of opeartion, continuous and multirun.

In multirun, the network runs for several iterations, defined by the user controlled

variable NumMultiRuns. For every new test interaction, the function SetupNetwork is

called to setup the new network based on the current iteration. This type of operation is

shown in the functions below. This main thread calls the function RunTestingCycle

periodically. The function checks if the amount of time designated for the test is over. If

it is, the function calls RunNextTest. This function checks to see if there are any more

iterations of the test to complete. If there are, it resets the system and returns true.

Otherwise if the experimentation is complete, it archives the statistics and returns false.

bool Network::RunNextTest()
{
 if (m_nSaveStats < m_NumMultiRuns)
 {
 m_nSaveStats++;
 g_NetworkStats.ArchiveStats();

 // now delete everything
 for (int ix = 0; ix < m_NumProcesses; ix++)
 {
 delete m_aProcess[ix];
 }
 m_NumProcesses = 0;

 Reset();
 for (ix = 0; ix < NUMCHANNELS; ix++)
 {
 if (pPhysicalLayer[ix] != NULL)
 pPhysicalLayer[ix]->Reset();
 }

 // now recreate everything
 SetupNetwork();
 return true;
 }
 else
 {
 g_NetworkStats.ArchiveStats(false);
 SaveNetworkStats();
 return false;
 }
}

bool Network::RunTestingCycle()
{

 27

 if (TType == ContRun)
 {
 return true;
 }
 else if (TType == MultiRun)
 {
 if (SGetSeconds() > RunsPerRun)
 {
 return RunNextTest();
 }

 return true;
 }
 return false;
}

2.3.6 Storing Statistics

Saving the simulation statistics to a file is very important. The simulator has a single

class that performs most of the work. The class name is NetworkStats. This class stores

all of the important physical layer statistics such as bit rate, collision data, and bandwidth

taken up for different kinds of frames. It also has the option to add custom statistics that

are gathered up and stored with the main ones.

The statistics gathering occurs at a programmable interval at which the

GenerateStatistics() function is called, which is by default, set to the value of one second.

During this one second, the statistics are entered through various functions in the physical

layer. Every time a packet is sent, a collision occurs, or any other event happens, these

are entered into the statistics class. At the end of one second several things happen. The

current values are copied into another structure, which store the previous values for

display. The GUI always displays the previous values rather then the current ones that

are changing. Then, the current values are added to the averaging structure. This is the

structure that is used for file output. At the end of an experiment, any statistics that are

relevant to the current experiment are saved to a file that can then be loaded into Excel.

 28

2.4 Application Programming Inteface

The goal of the simulator is to provide an API that is very similar to programming

under a conventional operating system, such as Windows or Linux. The functions

described below should be familiar as they emulate operating system calls.

2.4.1 Process Overrides

An application should override the following functions in the process class for the

simulation to work properly:

void Init()

This function is called when the network is first initialized. It can be used to create

sockets.

void OnStart()

This function is called when the network is initialized but right before anything is ran. It

can be used to obtain IP addresses.

Void Run()

This function is called every 1 ms by the architecture to act as a thread that is running

continuously.

void UserDrawStats(CDC *pDC, CPoint Offset, CPoint &Size)

This function is called by the network to allow the application to display data on the

screen while running

 29

2.4.2 Event Overrides

The following functions are ones that should be overridden in the process class if the

application requires any event based message handling:

void OnMessageReceived(int SourceIP, int Port)

This function is called when a message has been received. The port number and source

IP are passed through to distinguish which socket has generated the event.

void OnMessageSent(int Port)

This function is called when a socket message is completely sent via the network card.

void OnSaveStats()

This function is called, once a second, to allow the process to save any statistics into the

archive. It provides a nice way to store simulation data so it can be automatically

averaged and written out when a program is done executing.

2.4.3 Utility Function Calls

There is a class in the network that handles all of the statistics archiving. All of the

base statistics, such as the physical layer efficiency and the network card’s message

counts are automatically stored and can be written out. However, to store any statistics

that are generated by an application, the following functions are used

 30

int GetCustomStats(Process *pProcess, char *pName)

This function gets an index to be used for later archiving.

void AddCustomStats(int index, float value)

Given an index obtained with GetCustomStats this function adds a value into the archive.

2.4.4 DNS services

A network that dynamically allocates IP addresses requires a DNS service. The

following functions implement the service:

IPTYPE DNSGetIPAddress(char *&Name)

This function returns an IPAddress given a name. If the name is not unique which it

should be, this function adds a number at the end of the name because no two names in

the network can be the same.

IPTYPE DNSFindAddress(char *Name)

Given a name this function returns the IP address.

2.4.5 Timers

Two functions are used to obtain the current simulation time.

ULONGLONG NGetTicks()

This function returns the current time in ms.

 31

ULONGLONG NGetUTicks()

This function returns the current time in us.

2.4.6 Socket Functionality

These function calls are made to be similar to other operating system’s socket calls.

These work in tandem to the application override functions OnMessageSend and

OnMessageReceived:

int CreateSocket(int PortNumber, SOCKETTYPE SocketType, Process *pProcess =

NULL);

This function creates a socket and returns its ID.

void SetSockOpt(int Socket, int Option)

This function sets up the options for the socket.

bool Send(int Socket, char *lpBuf, int nBufLen)

This function broadcasts a message.

bool SendTo(int Socket, int DestIP, char *lpBuf, int nBufLen)

This function sends a message to a specific address.

int Receive(int Socket, char *lpBuf, int nBufLen)

 32

This function should be called in the OnMessageReceived event function. It returns the

data that is received.

2.4.7 Network Setup Functions

The network class only requires two functions to be overridden:

void SetupNetwork()

This function is used to conFigure a network. A typical network would create its

processes and set their options.

void SaveNetworkStats()

This function is called at the end of a testing run. It saves the statistics of the network. It

should be overridden so the user can specify exactly which statistics to save.

The network has the following options that should be set that determine the nature of

the testing run (TType = MultiRun or ContRun). The network can be setup to run

continuously or be setup to run a certain amount of times then stop running and output its

statistics

RunsPerRun

This variable determines how many seconds each run in multirun runs for.

m_NumMultiRuns

 33

This variable determines how many runs it does in multi run. For example run 5 times

for 100 seconds each.

m_nSaveStats

This variable is generated internally and indexes which run is occurring. It is used to

index the archiving of the statistics but can also be used to adjust the setup in the

SetupNetwork function. An example of the use of this variable would be to increase

traffic as m_nSaveStats is increasing so networking performance testing can be batched

together.

 34

Chapter 3 Wireless Simulation Experimentation

Before any experimentation can begin the simulator has to demonstrate that it works

correctly. To verify this two experiments are run. The first is to verify that the

theoretical maximum throughput of the simulation is similar to the real thing, and the

second is to verify that data integrity is maintained.

After the simulator is verified to be working correctly, several experiments are

performed. The first is to examine the transmission properties of 802.11, such as the

effect of having to relay packets through an access point. The second is to evaluate what

happens in a live streaming situation when all of the bandwidth is used up. The third

experiment is to evaluate some theoretical situations such as to increase the number of

channels used and see what happens.

3.1 Verification of the simulator

3.1.1 Bit Rate Test

In order to verify that the simulation is working properly several tests need to be run.

One of them is to verify that the bit rate is accurate. In order to do this a test network is

created where there is one server and one access point. The server broadcasts data to the

access point, which is then repeated. For each iteration of the test, the server increases its

traffic. The traffic starts at 40000 bytes a second and increases linearly for each iteration

(40000*iteration number).

 35

To demonstrate how easy the API makes programming the simulation, some of the

code is displayed. In order to select which network to use, the TestNetwork is selected in

the constructer of the main Windows class. This “switches” the TestNetwork class on,

allowing the class to control the simulation. To quickly change which network is being

simulated only the network class has to be changed.

CChildView::CChildView()
{
 m_pNetwork = new TestNetwork;
 m_pNetwork->Init();
}

The TestNetwork overrides the Network class that does most of the work. The

TestNetwork class only has two functions, SetupNetwork() and SaveStats(). SaveStats

just takes values of the NetworkStats class, that are automatically gathered, and saves

them to file. SetupNetwork is fairly simple. It loads up three processes and initializes

them. Notice that the data rate is variable depending on the iteration.

void TestNetwork::SetupNetwork()
{

 TType = MultiRun;
 m_NumMultiRuns = 15;

 m_aProcess[m_NumProcesses] = new ServerProcess;
 m_aProcess[m_NumProcesses]->Init();
 ServerProcess *tSProcess = (ServerProcess *)m_aProcess[m_NumProcesses];
 tSProcess->SetDataRate((m_nSaveStats+1)*40000);
 m_NumProcesses++;

 m_aProcess[m_NumProcesses] = new APProcess;
 m_aProcess[m_NumProcesses]->Init();
 m_NumProcesses++;

 m_aProcess[m_NumProcesses] = new ClientProcess;
 m_aProcess[m_NumProcesses]->Init();
 m_NumProcesses++;
}

The APProcess is an empty class that just initializes a NIC to be an access point so

no further explanation is required on that class. ServerProcess contains all of the key

functionality which only requires three functions. The Init function creates a socket that

 36

is used for broadcasting. The SetDataRate(int BRData) allows the network to change

the bit rate. The bit rate is changed by specifying the in-between time of two

transmissions. The Run function sends out packets at this interval. The interval is

selected partially randomly to make it more realistic. Notice that packet sizes of 10000

bytes are used and these are split up by the OS. This is done to verify that the

fragmentation functionality works.

void ServerProcess::Run()
{
 m_CurrTime = NGetTicks();
 if (m_CurrTime >= m_SendTime)
 {
 // send something out
 int Rand = rand();
 int ExtraTime = (m_IntervalTime*Rand)/RAND_MAX;
 m_SendTime = m_CurrTime + m_IntervalTime/2 + ExtraTime;
 if (m_SendSocket != -1)
 m_pOS->Send(m_SendSocket,m_SendBuffer,10000);
 }

}

void ServerProcess::Init()
{

 strcpy(m_ProcessName,"Server");
 // init create the socket
 Process::Init();
 m_SendSocket = m_pOS->CreateSocket(0,SockDataGram);
 m_pOS->SetSockOpt(m_SendSocket,BROADCAST);

}

void ServerProcess::SetDataRate(int BRData)
{
 // set it up to match the bit rate approx
 int MPerSecond = BRData/10000;
 if (MPerSecond <= 0)
 MPerSecond = 1;
 m_IntervalTime = 1000/MPerSecond;
}

The Client process does not contain a Run function because all it does is receives

data. It contains two functions of interest, OnMessageReceived, and UserDrawStats.

These two functions are virtual function overrides. OnMessageReceived, receives a

message sent by the server through the access point and adds the length of the message to

a counter. UserDrawStats, displays the total number of bytes sent by the server. Notice

 37

in Figure 3-1 that the client has an extra item in its display table that is generated by

UserDrawStats. All of the formatting is done automatically.

void ClientProcess::OnMessageReceived(int SourceIP, int Port)
{
 int length = 20000;
 char blah[20000];

 int length1 = m_pOS->Receive(m_ListenSocket,blah,length);
 m_TotalReceived += length1;
}

void ClientProcess::UserDrawStats(CDC *pDC, CPoint Offset, CPoint &Size)
{
 char tempo[200];
 sprintf(tempo,"Total Received %d",m_TotalReceived);
 pDC->TextOut(Offset.x+2,Size.y,tempo);
 Size.y += 15;

}

Figure 3-1, shows the visualization of the test. Most of the important data is

displayed in the GUI.

Figure 3-1 Verification test GUI

Figure 3-2 shows one of the results of the simulation. It shows the network data bit

rate increasing as the number of test iterations goes up. Notice that the line is not entirely

 38

linear because the function that sends data in the server uses integer arithmetic,

therefore it is not perfect. The maximum throughput bit rate in the graph is 7,579,227

bytes per second. This is in between the theoretical maximum given by 7.1 Mbps as the

UDP rate [Athe03b] and the 8.0 Mbps experimental result in chapter 6. The maximum

bit rate is a direct factor of the look up table numbers used for such things as minislot

time, which might be implemented slightly differently by different hardware vendors.

The 7.6 Mbps is overall consistent.

Network Traffic

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Run Number

Da
ta

 B
it

Ra
te

Series1

Figure 3-2 Verification results

3.1.2 Data Integrity Test

The simulation must maintain data integrity throughout. This means that if a file is

sent through the virtual network, the copy sent on the network must be the same as the

original. To verify this, a File Transfer Protocol (FTP) like setup is created. Where a

client requests that a file be sent, and the server sends out a file. This example is more

complex then the bit rate test, as it uses two sockets and handshaking. FTP generally

 39

requires a data port and a control port. The client sends a request to the server’s control

port. On receiving this message the server starts to send the file on the data port. When

any fragment of the file is received by the client, the client sends out an

acknowledgement. Upon receiving the acknowledgement, the server sends the next

fragment. When the file download is completed, the server sends the client an end of file

message on the control port and the client saves the file. To compare the two files, a file

comparison program is used, which confirms that the sent file and original file are the

same.

The FTPNetwork is quite simple as it contains a server, client and access point.

void FtpNetwork::SetupNetwork()
{

 RunsPerRun = 0; // sim done in 1 second set it as such
 TType = MultiRun;
 m_NumMultiRuns = 0;

 m_aProcess[m_NumProcesses] = new TServer1;
 m_aProcess[m_NumProcesses]->Init();
 m_NumProcesses++;

 m_aProcess[m_NumProcesses] = new TClient1;
 m_aProcess[m_NumProcesses]->Init();
 m_NumProcesses++;

 m_aProcess[m_NumProcesses] = new APProcess;
 m_aProcess[m_NumProcesses]->Init();
 m_NumProcesses++;

 Network::SetupNetwork();
}

The Client’s Run function enters into an “if” statement that requests the file from the

server only one time. After that, all the work is being done by the event handler,

OnMessageReceived. If the packet is a data packet, it is appended to the file. If it is a

control message, in this case the only control message, end of file, the file is written to

the hard drive.

 40

void TClient1::OnMessageReceived(int SourceIP, int Port)
{
 if (SourceIP == m_FTPServerIP && Port == DATAPORT)
 {
 // append to file
 m_CurrBufferLen += m_pOS->Receive(m_DataSocket,m_ReceiveBuffer+m_CurrBufferLen,200000);
 char tempo[200];
 sprintf(tempo,"Ack");
 m_pOS->SendTo(m_ControlSocket,m_FTPServerIP,tempo,strlen(tempo));
 // send out an ack
 }
 else if (SourceIP == m_FTPServerIP && Port == CONTROLPORT)
 {
 char tempo[200];
 m_pOS->Receive(m_ControlSocket,tempo,200);
 if (!strcmp(tempo,"EOF"))
 {
 // write out file
 FILE *tFile = fopen("ReceivedFile.jpg","w+b");
 fwrite(m_ReceiveBuffer,sizeof(char),m_CurrBufferLen,tFile);
 fclose(tFile);
 }
 }
}

void TClient1::Run()
{
 if (!m_bOnce)
 {
 m_bOnce = true;
 if (m_FTPServerIP != -1)
 {
 // send a request for file
 char tempo[100];
 sprintf(tempo,"Send File");
 m_CurrBufferLen = 0;
 m_pOS->SendTo(m_ControlSocket,m_FTPServerIP,tempo,strlen(tempo));
 }
 }
}

The server is also simple. In the OnStart function, which is called just before the

network is run, the server loads up a file into memory, in this case a jpeg. All of the work

in the server is done in the event handler, OnMessageReceived. Upon receiving the send

file request the server begins to send the file. With every subsequent ACK, the server

continues to send fragments of the file. When all the fragments are sent, the end of file

message is sent to the client.

 41

void TServer1::OnStart()
{
 // open up the file
 char tempo[200] = "c:\\ipclass\\protosim\\jan19.jpg";
 // char tempo[200] = "d:\\school\\ipclass\\protocalsim\\ReadMe.txt";
 FILE *tFile;
 tFile = fopen(tempo,"rb");
 m_TotalData = 0;
 if (tFile != NULL)
 {
 m_TotalData = fread(m_DataBuffer,sizeof(char),MAXBUFFER,tFile);
 ASSERT(m_TotalData < MAXBUFFER);
 fclose(tFile);
 }

}

void TServer1::OnMessageReceived(int SourceIP, int Port)
{
 char tempo[200];
 m_pOS->Receive(m_ControlSocket,tempo,200);
 if (Port == CONTROLPORT)
 {
 if (!strcmp(tempo,"Send File"))
 {
 m_ClientIP = SourceIP;
 m_DataSent = 0;
 int NumDataToSend;
 if (m_DataSent + m_DataSize > m_TotalData)
 NumDataToSend = m_TotalData - m_DataSent;
 else
 NumDataToSend = m_DataSize;
 m_pOS->SendTo(m_DataSocket,m_ClientIP,m_DataBuffer,NumDataToSend);
 }
 else if (!strcmp(tempo,"Ack"))
 {
 m_DataSent += m_DataSize;
 if (m_DataSent >= m_TotalData)
 {
 // just send an EOF message
 char tempo[200];
 sprintf(tempo,"EOF");
 m_pOS->SendTo(m_ControlSocket,m_ClientIP,tempo,strlen(tempo));
 }
 else
 {
 int NumDataToSend;
 if (m_DataSent + m_DataSize > m_TotalData)
 NumDataToSend = m_TotalData - m_DataSent;
 else
 NumDataToSend = m_DataSize;

 m_pOS->SendTo(m_DataSocket,m_ClientIP,m_DataBuffer + m_DataSent,NumDataToSend);
 }
 }
 }
}

The data integrity is verified by both doing a byte wise comparison of the files, and

seeing if both files looks the same when loaded into a viewer. Both comparisons pass as

the file is successfully sent over the network.

 42

In addition to verifying the data integrity of the simulator, this example also shows

how easy it is to create a realistic application running over the virtual network. Since the

API of the simulator closely resembles an actual OS API, it would likely be able to use

actual application code and run it over the simulator.

3.2 Simulator Experimentation

There are two reasons for using a wireless simulator. The first, is that it gives insight

into how 802.11 actually works. Experiments can be set up to observe what happens

internally in certain situations. The second, is to see what happens when the 802.11

standard is changed. 802.11 is designed as a general purpose standard. It may be

possible to make better use of bandwidth with a standard designed specifically for media

streaming. Since it is quite difficult to implement any changes to the standard in

hardware, it is advantageous to evaluate any such changes using a simulator.

This section evaluates 802.11 using three experiments. The first, determines what

differences occur when routing traffic through an access point compared to a peer to peer

situations. The second, determines what happens when all the bandwidth is being used

up. The third, performs experiments using multiple channels are used.

3.2.1 Effects of an Access Point

For media streaming with an access point there are two scenarios. The first, is that

the media server is connected directly to an access point or the media is being streamed

peer to peer through an access point. The setup with only one wireless connection is

 43

shown in Figure 3-3. The other setup is where the media server is streaming media

through the access point as in Figure 3-4.

Wired Wireless

Media Display Media server

Access Point

Figure 3-3 Test Setup 1

Wireless

Wireless
Media Display

Media server

Access Point

Figure 3-4 Test setup 2

Experiments are run to compare the various statistics in the two different setups. The

results are shown in the following Figures, 3-5 to 3-8.

Number of Resends VS Network Load

0
0.05
0.1

0.15
0.2

0.25
0.3

1 5 9 13 17 21 25

Increasing Load

N
um

be
r o

f R
es

en
ds

With AP

WithoutAP

Figure 3-5 Number of resends VS network load

 44

Data Rate VS Network Load

0

2000000

4000000

6000000

8000000

10000000

1 5 9 13 17 21 25

Increasing Load

D
at

a
R

at
e

(b
its

)

With AP
WithoutAP

Figure 3-6 Data rate VS network load

Wait Time VS Network Load

0

500

1000

1500

2000

2500

3000

3500

1 4 7 10 13 16 19 22 25

Increasing Load

W
ai

t T
im

e
uS

W ith AP

W ithoutAP

Figure 3-7 Wait time VS network load

Collision Rate VS Network Load

0
200000
400000
600000
800000

1000000
1200000
1400000

1 5 9 13 17 21 25

Increasing Load

C
ol

lis
io

n
R

at
e

(b
its

)

With AP
WithoutAP

Figure 3-8 Collision rate VS network load

 45

Figure 3-5 to 3-8 show the results. One of the setups has data routed through the

access point and the other can be said to be peer-peer. There is only one server sending

data. The data rate is increased to the point of network saturation. The x-axis in all

graphs are test runs each of which increase in size of data sent. Each run increases the

quantity of data linearly. Note that the access point routing experiment had only half the

data sent to it to account for the access point resending all the data.

In terms of total data sent, the withoutAP is actually the same before saturation but

because of a floating point error the withoutAP sends out more data frames then withAP

as you can see with the drift in Figure 3-6. No packets are dropped or missed until

saturation, so everything is getting through. After saturation withAP sends out slightly

more data, 7.7 Mbps compared to 7.67Mbps. The reason for this is that the back off time

for 802.11 is 2k+2. That means for the first interval there is an equal probability of

sending any 0-7 slots. However when two devices want to send, it is more likely that less

time will get wasted. This is shown in Figure 3-8, that shows less time in terms of wasted

bits waiting for something to send. This small amount though, is relatively insignificant.

The real difference is in wait time and number of resends shown in Figure 3-5. Here

wait time is the time between when a packet is ready to send and when the data portion is

sent. Both are higher in withAP then withoutAP. The wait time is calculated for only

one trip, so overall latency is much higher with the access point. Also note that the

sending process is generally synchronous. When the server has data to send, it sends out

multiple packets. Upon receiving the first out of a group of packets the access point

immediately requests use of the channel to retransmit the packet. Because of this, the

access point and server are sending data at the same time even when the channel is not

 46

congested. So the extra wait time is due to the collisions with both the server and

access point requesting the channel.

These results show that routing data through an access point halves the available

bandwidth but does not contribute to any additional significant efficiency loss in terms of

throughput. Having an access point does raise the wait time, thus increasing total latency

to a value higher then twice the peer to peer latency.

3.2.2 Wireless Simulation of 802.11 Media Streaming

This section looks at what happens when video is streamed over 802.11. The

experiments looks at the effects of bandwidth saturations with and without frame

fragmentation.

The wireless video simulation contains a server and a client. The server code is

fairly simple. It contains a Run function and an OnMessageSent function. The server

waits for a certain interval and then sends out fake RTP packets which contains the

timestamp and frame number but no real data.

void VideoServerProcess::Run()
{
 if (m_SendTime <= NGetTicks())
 {
 if (m_ReadyToSend)
 {
 char *tBuffer = m_SendBuffer;
 RTPINFO RTPInfo;
 RTPInfo.TimeStamp = NGetUTicks();
 RTPInfo.FrameNumber = m_FrameNumber;
 m_FrameNumber++;
 g_Protocals.CatRTPInfo(tBuffer,RTPInfo);
 m_pOS->Send(m_DataSocket,m_SendBuffer,m_FrameSize);
 m_ReadyToSend = false;

 }
 else
 {
 m_FrameNumber++;
 m_SkippedSending++;
 }
 m_SendTime += m_SendIncTime; // no jitter for now
 }

 47

}

void VideoServerProcess::OnMessageSent(int Port)
{
 m_ReadyToSend = true;
}

The client is far more complex because it is responsible for collecting the statistics.

The client is modeled as a live video player. It waits until a certain number of frames are

available and then its starts to play the video. When the number of frames in the buffer

falls off, it stops playing and waits for the buffer to fill up again. The client stores how

many video frames are played and the run length. The run length is defined as how many

frames in a row are playable or not playable. This is important as video compression can

require the previous frame in order to play the current one.

void VideoClientProcess::OnMessageReceived(int SourceIP, int Port)
{
 if (Port == VIDEODATAPORT)
 {
 m_pOS->Receive(m_DataSocket,m_ReceiveBuffer,MAXMESSAGESIZE);
 m_VideoBuffer.AddData(m_ReceiveBuffer);
 }

}

void VideoClientProcess::Run()
{
 if (m_StreamingTime <= NGetTicks())
 {
 m_CurrBufferSize = m_VideoBuffer.GetNumFrames();
 m_BufferSizeC += m_CurrBufferSize;
 m_BufferSizeT++;

 ArchiveInternalStats();

 bool CanPlay = false;
 if (m_bBufferBigEnough)
 {
 if (m_CurrBufferSize > m_MinHBuffer)
 CanPlay = true;
 else
 m_bBufferBigEnough = false;
 }
 else
 {
 if (m_CurrBufferSize > m_MaxHBuffer)
 {
 CanPlay = true;
 m_bBufferBigEnough = true;
 }
 }

 if (CanPlay)

 48

 {
 char *tBuffer = m_ReceiveBuffer;
 bool ValidData = m_VideoBuffer.GetData(tBuffer);
 if (m_bPlayedLastFrame)
 {
 if (ValidData)
 {
 m_TotalPlayedFrames++;
 m_RunCounter++;
 if (m_RunCounter >= 50)
 {
 m_TotalPlayedRuns++;
 m_PlayedRunSizeC += m_RunCounter;
 m_RunCounter = 1;
 }
 }
 else
 {
 m_TotalPlayedRuns++;
 m_PlayedRunSizeC += m_RunCounter;
 m_bPlayedLastFrame = false;
 m_RunCounter = 1;
 }
 }
 else
 {
 if (ValidData)
 {
 m_TotalPlayedFrames++;
 m_bPlayedLastFrame = true;
 m_TotalMissedRuns++;
 m_MissedRunSizeC += m_RunCounter;
 m_RunCounter = 1;
 }
 else
 {
 m_RunCounter++;
 if (m_RunCounter >= 50)
 {
 m_TotalMissedRuns++;
 m_MissedRunSizeC += m_RunCounter;
 m_RunCounter = 1;
 }
 }
 }

 }
 else
 m_NumTimesSkipped++;

 m_StreamingTime += m_StreamingTimeInt; // no jitter for now
 }

}

The OnMessageReceived simply checks which port the data is coming from and then

adds the data into a buffer. The Run function does all the work. It first checks to see if

there is enough data in the buffer in order to play a frame. If it can play the frame it

increments the number of frames played and alters the run length counter accordingly.

 49

Note that the run length is arbitrarily capped at 50, which means that either the video is

being continuously played or continuously not played.

In terms of the frame rate, the video frame size is identical. That is, having a frame

interval of 45ms uses the least bandwidth and a frame interval of 30ms uses the most

bandwidth. The values are chosen such that 45ms is right before bandwidth saturation

and 30ms is an extreme example of bandwidth saturation. Note that for all the graphs,

the x-axis is time. Each unit represents one video frame.

Generally speaking, when all of the bandwidth is used up, the buffers of the OS fill

up. When this happens and a SendTo function is invoked, the OS cannot accept the data

and returns an error message. At this point, the application can either wait for room to

appear in the buffer or discard the packet. In this experiment, the application also had the

option to fragment or not fragment the data. Since the simulator OS supports

fragmentation, an option could be toggled that lets the OS discard the entire packet if it

does not fit into the buffer rather then fragmenting it and sending only some of it.

The effects of fragmentation are shown by comparing the results in Figures 3-9 and

3-10. Here, the same streaming bit rate is used, however, in Figure 3-10 packets are only

sent if the entire packet can be placed in the OS buffer. In Figure 3-10 it can be

observed, that as the required bandwidth goes up, the number of frames that do not get

through to the client increases. This increase appear to be linear. However when the

packets are fragmented as shown in Figure 3-9, the increase can be described as

catastrophic. That is, after a certain point very few or any whole video frames make it

through.

 50

The experiment gathers statistics on how the missing frames appear on the play

buffer. This can be seen in Figures 3-11 and 3-12. These Figures show the play buffer

and the run length. As can be seen in Figure 3-10, the 37ms frame interval has around a

60% play rate. This corresponds to the buffer being only around 60% full. This means

that although by frame number there is a 30th frame in the buffer, there are several

missing frames interspersed. Figure 3-12 shows the run length. On average there are 1.6

frames playing and then 1 frame not playing, then 1.6 framing played etc. This shows

that the missing frames can be thought as holes periodically spaced in the play buffer.

Percentage of Played Frames (All)

0

0.2

0.4

0.6

0.8

1

1.2

1

20
2

40
3

60
4

80
5

10
06

12
07

14
08

16
09

18
10

20
11

22
12

Time

%
 o

f P
la

ye
d

Fr
am

es Percentage Played
Frames 30ms
Percentage Played
Frames 33ms
Percentage Played
Frames 37ms
Percentage Played
Frames 40ms
Percentage Played
Frames 45ms

Figure 3-9 Percentage of played frames

Percentage of Played Frames NoFrag (All)

0

0.2

0.4

0.6

0.8

1

1.2

1

20
2

40
3

60
4

80
5

10
06

12
07

14
08

16
09

18
10

20
11

22
12

Time

%
 o

f
P

la
ye

d
 F

ra
m

es Percentage Played
Frames 30ms
Percentage Played
Frames 33ms
Percentage Played
Frames 37ms
Percentage Played
Frames 40ms
Percentage Played
Frames 45ms

Figure 3-10 Percentage of played frames no fragmentation

 51

Buffer Size vs Time NoFrag (37ms)

0
5

10
15
20
25
30
35

1

20
8

41
5

62
2

82
9

10
36

12
43

14
50

16
57

18
64

20
71

Time

N
um

be
r

of
 F

ra
m

es

Playable Buffer Size
Total Buffer Size

Figure 3-11 Buffer size

Run Length vs Time NoFrag (37ms)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1

21
4

42
7

64
0

85
3

10
66

12
79

14
92

17
05

19
18

21
31

Time

R
un

 L
en

gt
h

Playable Run Length
Missed Run Length

Figure 3-12 Run length

The result of this experiment shows several things. The first is the effects of

fragmentation. Generally speaking, fragmentation should be avoided if possible. It also

shows that when trying to send more data than the network can handle packets are

dropped at the sender’s end by the OS. These packets are dropped at a periodic rate, that

is on average they are evenly interspersed. This leaves holes in the clients play buffer,

which is not desired because compression techniques require a chain of frames to be able

to play correctly.

 52

3.2.3 Multiple Channel Experimentation

Theoretically, adding a second channel simply doubles the maximum bit rate.

However, under certain conditions, having more then one channel can lead to

inefficiencies if one channel is used more than another. The experiments examine some

performance issues with having multiple channels with multiple servers and having

multiple channels with different Bit Error Rates (BER).

The first experiment verifies that increasing the number of channels, all with the

same BER, will increase the bit rate proportionately. The experiment uses four servers

rather then one to increase the randomness of the traffic. The combined channel bit rate

generally increases linearly as seen in Figure 3-13. However, during early

experimentation something odd occurred. The algorithm that was first used to pick

which NIC to send a packet was very simple. It simply picked the one with the smallest

buffer size at the time. If they all are empty it defaulted to channel 0. Originally, this

was considered as the best algorithm to use, as it should have equalized the load level

over all of the channels. As seen by Figure 3-13, 14,15 using this selection algorithm did

not equalize the channels in terms of data bit rate, wait time and number of resends. This

algorithm favored the channels with lower numbers as the selection algorithms generally

favors them.

 53

Data BR Smallest Buffer

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Increasing Traffic

Da
ta

 B
R

ch0
ch1
ch2
ch3
ch4
All ch

Figure 3-13 Data bit rate for five channels, smallest buffer selection

Wait Time Smallest Buffer

0

1000

2000

3000

4000

5000

6000

7000

8000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Increasing Traffic

W
ai

t T
im

e

ch0
ch1
ch2
ch3
ch4
All ch

Figure 3-14 Wait time, smallest buffer selection

Number of resends Smallest Buffer

0

0.05

0.1

0.15

0.2

0.25

0.3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Increasing Traffic

Nu
m

be
r o

f R
es

en
ds ch0

ch1
ch2
ch3
ch4
All ch

Figure 3-15 Number of resends, smallest buffer selection

 54

The same experiment is re-run with a different channel selection algorithm. This

algorithm instead selected the channels randomly, without any consideration of its load.

The results are shown by Figure 3-16, 17, 18. This selection algorithm equalized all of

the key statistics, which is desirable.

Data BR Random Selection

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Increasing Traffic

D
at

a
B

R

ch0
ch1
ch2
ch3
ch4
All ch

Figure 3-16 Data bit rate random selection

Wait Time Random Selection

0

2000

4000

6000

8000

10000

12000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Increasing Traffic

W
ai

t T
im

e

ch0
ch1
ch2
ch3
ch4
All ch

Figure 3-17 Wait time, random selection

 55

Number of resends Random Selection

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Increasing Traffic

Nu
m

be
r o

f R
es

en
ds ch0

ch1
ch2
ch3
ch4
All ch

Figure 3-18 Number of resends, random selection

The next experiments are performed using two channels each with different BER,

and applying the random selection algorithm. The results are shown in Figure 3-

19,20,21. In Figure 3-19,20 the BER of channel 0 is set to 1 in 1,000,000 chance of any

bit containing an error. The BER of channel 1is set to 1 in 20,000 chance of any bit

containing an error. The results are dramatic, showing that the channel with the higher

bit error rate has much higher wait time and number of resends. Figure 3-21 shows the

results of a duel channel setup where one of the channels is fixed at 1 in a 1,000,000 bit

error rate and the other have various bit error rates from 1 in 100,000 to 1 in 12,000. The

results show that over higher network loads, the channel with the higher bit error rate

gradually carries less of the load.

 56

Wait Time

0

2000

4000

6000

8000

10000

12000

14000

1 4 7 10 13 16 19 22 25 28 31 34

Increasing Load

W
ai

t T
im

e
(u

S
)

CH 0 BER = 1000000
CH1 BER = 20000

Figure 3-19 Wait time for different BER

Number of Resend

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 4 7 10 13 16 19 22 25 28 31 34

Increasing Load

R
es

en
d

tim
es

CH0 BER = 1000000
CH1 BER = 20000

Figure 3-20 Number of Resends, different BER

BER vs Percentage Load

0

0.1

0.2

0.3

0.4

0.5

0.6

1 4 7 10 13 16 19 22 25 28 31 34

Increasing Load

Pe
rc

en
ta

ge
 L

oa
d

CH1 BER 100000
CH1 BER 50000
CH1 BER 20000
CH1 BER 12000

Figure 3-21 BER vs Percentage load

 57

The last experiment is a comparison of the two channel selection algorithms when

one channel has a higher bit error rate. These results are shown in Figure 3-22. It shows

that using the smallest buffer is far better then choosing the random selection algorithm

because too much data is placed in the channel with the high BER which never gets sent

over. Note it is possible to use a hybrid algorithm that has the best of both algorithms.

The results are meant to show the extremes when a poor algorithm is chosen.

Total Data Rate

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

1 4 7 10 13 16 19 22 25 28 31 34

Increaseing traffic

Da
ta

 b
its Smallest Buffer

Random

Figure 3-22 Total data rate of selection algorithms

3.2.4 Experimentation Conclusion

CSMA-CA (802.11) is quite a bit different from CDMA-CD (802.3) but the nature

of its properties is similar. 802.11 generally, has lower throughput given a bit rate and

higher latencies than 802.3. Its bit rate is also halved when routing communications

through an access point. 802.11 is also susceptible to higher bit error rates that can

severely impair performance. However in a well setup wireless network with a low bit

 58

error rate, other then a lower throughput and higher latencies, there are not any other

properties of 802.11 that would cause problems for wireless streaming.

 In terms of media streaming, it is important to make sure that when the packets are

fragmented, that all of the data can be sent. This section also shows that doubling the

number of channels can effectively double the bit rate. Some care though has to be given

to the algorithm that selects the channel. It would be useful if there is some knowledge

about the overall channel error rate that can be used in selecting a channel.

 59

Chapter 4 DirectShow Filters

DirectShow is Microsoft’s media streaming technology and is part of the larger

DirectX suite. DirectShow contains all of the components for audio/video capture and

playback in a multitude of formats. Windows Media Player is an application that is

written using DirectShow. Most of the actual functionality in the media player is handled

by DirectShow components.

4.1 Why Use DirectShow

A live media streaming application consists of many components, audio/video

capture devices, encoders, decoders, renderers, the server and the data transport

mechanism. Some of the components, such as the capture device drivers, are usually

provided by the operating system or by the hardware manufactures. The audio/video

renderers are also normally handled by the operating system. That leaves the

encoder/decoder mechanism and the server/ data transport mechanism left to be

implemented.

Although this project required the creation of the server/data transport mechanism,

creating an encoder/decoder is beyond the scope of this thesis. Encoder technology has

improved in recent years with the advent of MP3 audio, and MPEG-4 video. Creating a

state of the art audio or video encoder from scratch is quite difficult. Instead pre-made

audio/video encoder/decoders are commonly used. The solution chosen in this thesis is

to use the Microsoft MPEG-4 video encoder/decoder [Micr05] and the LAME MP3 audio

 60

encoder [LAME05]. The MPEG-4 video encoder is provided free with Microsoft

Windows XP. The LAME MP3 audio encoder has lower latency then the available

Microsoft audio encoder Audio V8, and is freeware.

Both of the audio and video encoders are provided in DirectShow filter form. A

DirectShow filter is a discrete component that has media functionality. By using the

DirectShow API, it is possible to use the media capture, encoders/decoders and render

components. This simplifies the overall development to only creating the server, the data

transport mechanism, the client and the DirectShow components required to interoperate

with the other existing DirectShow components.

4.2 Introduction to COM

For this project the Component Object Model (COM) [COM05] is used because

DirectShow is based on COM. Each DirectShow object used, such as an encoder, a

renderer or a capture device is a COM object. Although COM may be a hard to master, it

is easy to understand the basics and program with it. The following section describes the

basics of COM, in order that it can be understood when it is used in the next few sections.

COM base on a model of reusable components. The need for COM occurred as

programs became more and more complex and it was realized that it is possible to reuse

components rather then have to recreate the same code to different application. In the

mid 90’s Microsoft introduced COM as a way of using components in Windows. This

can be seen in Microsoft software, such as the applications that make up the Office suite.

COM is prevalent in applications such as Power Point and Word. Although Power Point

and Word are different applications, they still contain similar components such as the

 61

spell checker, and the font editor. To load a COM object, the operating system,

Windows, searches its record of all COM objects registered with it, and loads the proper

COM objects if they exist.

COM is similar to the programming methodology of reusing code libraries. The

difference is, that when using libraries, all of the code is recompiled into the new

program. When using COM, the compiler only needs to know the interface to the object,

and the object is created and accessed at run time. In this way, COM is similar to

dynamic link libraries, however, as a standard it is formally defined. COM also has other

features such as the ability for objects to be distributed, and to provide security access

control.

A basic program contains data with a set of functions to manipulate the data. COM

provided a black box approach to interfacing the data and the functions. COM objects

contain interfaces, which defines how to interact with an object. The interface is simply a

description of the callable functions that are implemented by the object. The interface is

the only way to interact with the object as it is not possible to directly access data in an

object, as it is possible to access public member variables from c++ class objects.

All COM objects implement the IUnknown interface. This interface provides the

bare functionality needed for a COM object to exist. It contains three methods,

QueryInterface, AddRef, and Release. QueryInterface allows the user to check for other

interfaces of the object. AddRef and Release are required because of the way COM

handles destruction of objects. It is possible for multiple clients to use the same object.

When one client ends its use of the object, it cannot delete the object because then the

object would be deleted for the other clients. Instead, the client calls Release which

 62

decrements an internal object reference count. When the object count reaches zero, it

knows that no one is currently using the object and it can delete itself. The AddRef

function increases the count of the object by one and is performed when the object is first

referenced by a client.

In addition to the IUnknown interface, an object normally defines another interfaces

that contain its functionality. The interfaces can either be a custom interface that is

defined by the object or a standard interface that is used to represent common

functionality of similar objects. An example of this is video encoders. There is a

standard interface that all COM video encoders should implement that defines

functionality relating to altering the encoder settings such as bit rate, frame rate, etc.

However, if the encoder has any specific settings it can be implemented in its own

custom interface.

In the following sections, the uses of COM are described in more detail. The video

streaming project uses both pre-made COM objects such as video encoder/decoders, and

also creates its own interfaces such as the audio renderer and the two DirectShow

interface filters.

4.3 What is a DirectShow Filter

A DirectShow filter is a component that can be combined with other components to

form a media stream. There are three main types of filters, source filters, transform filters

and render filters. Source filters are filters that are the origin of media samples, such as

files, capture cards, and internet streams. Transform filters are those that receive a media

sample, transforms it by changing its format by compressing it or by editing the sample

 63

and sending it along to the next filter. Render filters are the last filter in a filter chain

such as a video display filter or an audio render filter.

Filters are all designed using a common template. In the template, information such

as the number of pins, the filter name, and the ID of the filter is stored. All the filters are

based on COM, and depending on the filter type, each filter implements at least one or

perhaps several COM interfaces that are specific to filters. Each filter contains at least

one input/output pin. Each of these pins on the filter are also their own COM object, and

handle the initial interfacing to other filters and the transportation of data.

The reason behind the filter architecture is so that the media streaming software can

be made up of components. Media streaming software can be made up of several

components from different vendors. This makes it easy for hardware manufactures to

write software for their devices, as they only need to implement those components that

are directly related to the hardware device. By conforming to the standard, their devices

can interoperate with those of the other manufacturers. Third party software developers,

for example encoding vendors, need only write the encoder and decoder and they can use

any available components when writing their media player. For our purposes using

DirectShow filters make it possible to use pre-existing components such as video capture

filters, and encoders/decoders. Without the use of these pre-existing filters, it would be

impossible (due to time limitations) to construct live video/audio streaming software.

Knowledge of programming filters is required for this project. The server and the

client program cannot directly communicate with standard DirectShow filters. The server

is required to receive input from the encoders, while the client program that receives

media data through the LAN, sends data to the decoders. For the server and client to

 64

communicate with DirectShow filters, two custom filters, one on the server side and

one on the client side is required. These filters act as the interface between the server and

client applications that are programmed using Visual C++ and MFC, and DirectShow

filters, which are programming using Visual C++ and COM.

4.4 Graph Edit

For useful processing to occur, a number of filters have to be connected. A COM

filter graph (IFilterGraph) interface exists that can be used to connect filters. This can

either be done at the coding level using the filter graph interface, or by using a graphical

program called Graph Edit. Graph Edit is a graphical representation of the filter graph

interface. It is useful in quickly creating and debugging filter graphs. The software has a

nice interface in which any filter that is registered can be loaded and then connected to

another filter. To connect one filter to another, one can simply left click, hold on an

output pin, drag the mouse over an input pin, and release. If it is possible for the filters to

connect together they will. If they cannot connect together, the Graph Edit program will

use a mechanism called intelligent connect. Graph Edit will search for any combination

of in intermediary filters that can connect the two filters together. If it cannot find one, it

gives up and outputs an error message. If it can find some intermediate filters, it will

automatically insert them into the graph and connect all the filters together.

 65

Figure 4-1 Graph Edit example

An example of using Graph Edit is shown in Figure 4-1. This Figure demonstrates

the use of Graph Edit. In the example, two filters are inserted into the editor, a video

capture filter and a render filter. After the two filters are connected, pressing the play

button in the tool bar causes the graph to start playing. A video display Windows pops

up and the captured video starts to play (Figure 4-2). By using Graph Edit, a quick TV

application can be created in a matter of minutes without having to write a single line of

code.

 66

Figure 4-2 Graph edit playing example

In some graphs, intelligent connect is very useful. In Figure 4-3, initially there were

only three filters in the graph, the capture filter, the memory copy transform filter and the

video renderer. After connecting the capture filter to the transform filter, an attempt is

made to connect the transform filter to the render filter. There is a problem with doing

this. The transform filter uses a different video format then the render filter, and they are

not compatible. The two filters initially fail when trying to connect. After this happens,

Graph Edit uses intelligent connect to attempt to connect the two filters using any number

of intermediate filters. In this case, Graph Edit automatically finds a fourth filter, which

converts the format the memory copy filter provides into a format the video renderer

desires. In this example, it is a simple conversion from 16 bit Red Green Blue (RGB)

video to 32 bit RGB video. It is also possible to change the settings on each filter. This

 67

is shown in Figure 4-4, where it is possible to change the video color settings on the

capture card.

Figure 4-3 Memory copy test graph

Figure 4-4 Changing the settings example

 68

4.5 Filter Programming Example

Understanding how a filter works is not complicated, however, it is difficult to

explain. To fully appreciate how a filter works, a simple example is presented that

explains most of the basics of creating a filter and having it interoperate with other filters.

This example is similar to sections in both the DirectX SDK [Micr02] and a reference

book [Pesc03]. Sample code is used to show the key functionality of the filter. The

sample code is taken from the actual memory copy test filter. Some of the functions, are

shortened to eliminate some of code, that although is necessary for the filter to work, is

not that useful in explaining how it works. Hence, all of the code can be considered

pseudo code rather then the exact code that exists in the filter.

The filter given as an example is commonly referred to as a null filter or in this case

a memory copy filter. This filter has no processing inside of it. All it does is receive data

from the input filter, copy it, and then send it to the output filter. It can be used as a

starting point for a more complex transform filter where the filter manipulates the data, or

as shown later, streams the data over the network.

There is a lot more to creating filters then just the information provided in this

section. Doing anything more complex then a simple null filter requires more

functionality then is shown in this section. Even changing the compiler settings for the

first time to get the filter to compile is quite time consuming. This section focuses on

showing how a filter works through explaining its basic functionality, rather then

providing exact instructions on how to create one.

 69

4.5.1 Using the DirectShow SDK

Included with the DirectX Software Development Kit (SDK) is the DirectShow

SDK. The SDK does not normally come with Windows and is a separate download from

Microsoft’s web site. It includes Graph Edit, sample projects, and documentation. The

SDK also includes utility code that does a lot of the common low-level operations. This

is very similar to the MFC, which provide much of the code for low level Windows

interfacing that significantly speeds up development. The code included in the SDK is

invaluable and saves a lot of programming time.

The memory copy filter is not created from scratch. The project uses three classes

provided by the SDK: CBaseFilter, CBaseInputPin, and CBaseOutputPin. Writing a

new class that inherits these base classes saves a lot of time. All of the common

functionality that all filters have is already included in the base classes. Only

functionality that is specific to the filter is required to be written.

The SDK also includes a very useful helper class called CTextMediaType. A

DirectShow media structure, which contains all of the specifics of a media format is

partially composed of unintelligible COM Globally Unique Identifier (GUID). This

makes debugging difficult. A GUID is a 16 byte identifier that is different for every

COM object. This class contains functionality to convert COM GUIDs to readable

strings, and other functionality to convert the entire media structure to a readable string.

An example of the output might be “Major Type:MEDIATYPE_Video – Sub Type:

MEDIASUBTYPE RGB555 - Format: RGB 320x240, 16 bits” rather then a group of

numbers.

 70

4.5.2 The Memory Copy Filter

4.5.2.1 Basic Configuration

The first step when creating a filter is to have it compiled and registered by the

operating system. The easiest way to do this is to copy pre-existing sample code included

with the SDK. The important functionality to copy is the barebones that allow the filter

to work within the COM framework. Several of the copied data structures have to be

altered which change the characteristics of the filter.

The first is the COM GUID of the filter which has to be changed as it should be

different for every COM object:

DEFINE_GUID(CLSID_JNULL,
0xe2035248, 0x895e, 0x4817, 0x8e, 0x7f, 0xac, 0x3a, 0x9d, 0xcb, 0xcc, 0x1f);

This GUID is generated from a Windows utility program called uuidgen.exe. Next,

the filter’s characteristic structures have to be customized to the null filter. These

structures are used when the filter is being registered with the operating system so that

the operating system knows what kind of filter it is, and in what category (audio, video,

encoders, decoders etc) to place it. An example of the structures are shown below:

const AMOVIESETUP_MEDIATYPE sudPinTypes =
{ &MEDIATYPE_NULL // clsMajorType
, &MEDIASUBTYPE_NULL }; // clsMinorType

const AMOVIESETUP_PIN psudPins[] =
{ { L"Input" // strName
 , FALSE // bRendered false unless rendering
 , FALSE // bOutput true if pin is output
 , FALSE // bZero true if filter can have zero instances of this pin
 , FALSE // bMany true if filter can have more then one instance of this pin
 , &CLSID_NULL // clsConnectsToFilter obsolete
 , L"" // strConnectsToPin obsolte
 , 1 // nTypes number of media types supported
 , &sudPinTypes // lpTypes
 }
, { L"Output" // strName
 , FALSE // bRendered
 , TRUE // bOutput
 , FALSE // bZero
 , FALSE // bMany
 , &CLSID_NULL // clsConnectsToFilter
 , L"" // strConnectsToPin
 , 1 // nTypes

 71

 , &sudPinTypes // lpTypes
 }
};

const AMOVIESETUP_FILTER sudNullNull =
{ &CLSID_JNULL // clsID
, L"Memory copy test" // strName
, MERIT_DO_NOT_USE // dwMerit
, 2 // nPins
, psudPins };

Once the filter is compiled for the first time, to register the filter with the operating

system, that is to make it available to be loaded through Graph Edit, the program

regsvr32.exe is used. Several other functions are required for COM and the registration

processes. However, they are common to all filters and can be copied from sample code.

Since they do not add to the understanding of how filters work, they are not included in

this discussion.

4.5.2.2 The Main Filter Class

The main class for the filter is the one derived from CBaseFilter, called CFilter.

Overriding a base class makes CFilter rather simple with only a few functions required in

order to work. The three functions required have to do with configuring the filters input

and output pins. The first function is the constructor at which the input and output pins

are created.

m_pInputPin = new CInputPin (NAME ("CInputPin"),this, & m_crtFilter, phr, L"Input") ;
m_pOutputPin = new COutputPin (NAME ("CInputPin"),this, & m_crtFilter, phr, L" Output ") ;

CinputPin and COutputPin are described later in the chapter. The next two functions

are rather important to understanding how the filter works.

int GetPinCount () { return 2 ; }

CBasePin GetPin (IN int Index)
{
 CBasePin *pPin ;

 72

 if (Index == 0)
 pPin = m_pInputPin;
 else if (Index == 1)
 pPin = m_pOutputPin;
 else
 pPin = NULL;
 return pPin ;
}

The preceding code is simple but it allows Graph Edit to recognize the pins of the

filter. The code is used internally in the CBaseFilter class to enumerate all of the filter’s

pins. It allows for the internal enumeration functions to know how many pins are in the

filter and to get access to all of them by repeated calling of the GetPin function with

higher index numbers. The enumeration function is the one called by Graph Edit to

Figure out how many pins the filter has and how to display them.

This is a good example of good software engineering. It is useful to put as much of

the functionality into the base class as possible. In this case the mechanism that Graph

Edit uses to enumerate all of the pins of the filter is put into the base classs. The base

class can contain all the functionality, but it must be guaranteed that the inheriting class

will somehow provide the specific details of its pins. This is done by the base class

requiring the inheriting class to override certain functions, functions that provide it with

the necessary data. These functions are referred to as “pure virtual” functions. That

means that the inheriting class (the one that inherits all the functionality of CBaseFilter,

in our case CFilter) is required to create its own versions of the pure virtual functions for

the class to compile. Because the base class knows that the child class is forced to

override these functions, it can use the functions without worrying whether the functions

exist, or if the pin data is available.

The CFilter class requires one more function to be useful. The function listed below

is shortened, as the actual Receive function has more code in it, but this function shows

 73

basically what the function does. It is called by the input pin when it has data ready,

then makes a copy of the data and sends the copy to the output pin:

HRESULT CNullNull::Receive (IN IMediaSample * pms)
{
 pms = Copy(pms);
 hr = m_pOutputPin->Deliver(pms);
 return hr;
}

This section explains how a filter is created and how the filter is recognized by

Graph Edit. All of the key functionality, in this case just the data copying would occur in

the main filter class. If the filter had to do any transformations it would call a function

such as Transform(pms) that would transform the data before sending it to the output pin.

What is missing from the filter is that even before the filter can receive a media sample, it

must negotiate the connection type both with the input and output filter. This leads to the

following discussion of what the input and output pins looks like.

4.5.2.3 Input/Output Pins

The Input pin class CInputPin inherits from the CBaseInputPin class and the Output

pin class COutputPin inherits from the CBaseOutputPin class. Once again, the base

classes provide much of the functionality, including the process by which the pins

negotiate connections. The base classes require the child classes to override several pure

virtual functions to provide the base classes with the information of what media types the

pins require/provide.

The negotiations start when Graph Edit attempts to connect two filters together. The

process begins and the output pin looks at which media types are preferred by the input

pin. A media type data structure looks like:

 74

typedef struct _MediaType {
 GUID majortype;
 GUID subtype;
 BOOL bFixedSizeSamples;
 BOOL bTemporalCompression;
 ULONG lSampleSize;
 GUID formattype;
 IUnknown *pUnk;
 ULONG cbFormat;
 [size_is(cbFormat)] BYTE *pbFormat;
} AM_MEDIA_TYPE;

After the media type is identified as video by looking at the majortype GUID, the

pbFormat pointer can be type cast into the video information header structure. This is

done in C code by doing this:

VIDEOINFOHEADER *pVIHeader = (VIDEOINFOHEADER *) pbFormat;

This is telling the compiler to fill a VIDEOINFOHEADER (shown below) structure

with the data contained in pbFormat.

typedef struct tagVIDEOINFOHEADER {
 RECT rcSource,
 RECT rcTarget;
 DWORD dwBitRate;
 DWORD dwBitErrorRate;
 REFERENCE_TIME AvgTimePerFrame;
 BITMAPINFOHEADER bmiHeader;
} VIDEOINFOHEADER;

The bmiHeader also contains more useful information.

typedef struct tagBITMAPINFOHEADER {
 DWORD biSize;
 LONG biWidth;
 LONG biHeight;
 WORD biPlanes;
 WORD biBitCount;
 DWORD biCompression;
 DWORD biSizeImage;
 LONG biXPelsPerMeter;
 LONG biYPelsPerMeter;
 DWORD biClrUsed;
 DWORD biClrImportant;
} BITMAPINFOHEADER;

These structures and the corresponding ones (not shown) for audio generally define

every format available. By using type casting, only one base structure is required for

every media type. This simplifies function calls, as there is only one variable parameter

required to define all media types. The variable actually used is of type CMediaType,

which is a wrapper class. A wrapper class is a class that inherits all the data of a

 75

structure, in this case the AM_MEDIA_TYPE structure, but also provides additional

functionality that is useful.

The functions that the base classes use to find out which media types are suitable

during the negotiations are as follows:

HRESULT GetMediaType (IN int iPos, OUT CMediaType *pmt)
HRESULT CheckMediaType (IN const CMediaType * pmt)

The GetMediaType function returns the preferred media type for a given pin, given

an index identifying the pin. This function is used by the base class to enumerate all of

the media types by going through the index from zero to whenever the function returns a

value that specifies that no more media types exist.

The CheckMediaType function is used to confirm that a given media type is

acceptable by the pin. An example negotiation might go as follows. The output pin calls

the input pin’s GetMediaType to see what media types the input pin prefers. If any of

them match, by having the output pin return true when calling its own CheckMediaTy,e

then there is a match. If there is not a match the output pin can enumerate its own

preferred types by calling its own GetMediaType and calling the inputs pins

CheckMediaType to see if any of them are acceptable. If there are no matches then the

two filters cannot directly connect.

For the null filter, the input pin will accept any format the connecting filter’s output

pin requires, since all the filter does is copy the data and send it to the next filter.

HRESULT CInputPin::CheckMediaType (IN const CMediaType * pmt)
{

m_mt.Set(*pmt);
return S_OK;

}

The function also saves the media type into the m_mt variable, as it is used in the

null filters output pin when negotiating that connection. Since the null filter does not do

 76

any transformations, the media samples produced by this filter are in exactly the same

format as they came in. When the output pin negotiates its format it can only accept the

format that the input pin agreed to. The output pins CheckMediaType function might

look something like this:

HRESULT COutputPin::CheckMediaType (IN const CMediaType * pmt)
{
 HRESULT hr ;

 CMediaType InputType;
 CInputPin *pInputPin = (CInputPin *)m_pFilter->GetPin(0);

 // get information from the input pin
 pInputPin->GetMediaType(0,&InputType);

 if (*pmt == InputType)
 return S_OK;

 return S_FALSE;
}

The only thing the code does, is to check if the input pin that the output pin is trying

to connect to, has the same media type as the output pin requires. If it does, this function

returns true. Note that the if statement is pseudo code and in reality it would be required

to check different parts of the media structure to see if the two are alike enough to

warrant a match.

After the pins have negotiated an agreed media type, the pins need to find a way to

transport the data from the output pin to the input pin. The most common transport is

local memory transport which simply uses the main computer memory. Note, that there

are hardware options, such as a video capture card, that directly transfers data to a video

card bypassing main memory. In most cases, the output pin decides what the size of the

memory buffer should be. A common example of this is when a video stream that is 320

pixels wide and 240 pixels high at 24 bits per pixel, would require a buffer of at least

 77

320x240x3 = 230400 bytes. The output pin allocates a buffer of this size and then

sends the buffer information to the input pin to verify that it is the correct size.

The buffer allocator negotiations are mostly handled by the base classes, but they

require several functions to be implemented in the child pin classes.

HRESULT CInputPin::NotifyAllocator(IMemAllocator *pAllocator, BOOL bReadOnly)

The NotifyAllocator function is implemented by the input pin to verify that the

allocator settings are valid. The IMemAllocator interface contains all of the functionality

that allows the input pin to get the properties of the buffer.

HRESULT COutputPin::DecideBufferSize (IN IMemAllocator * pIMemAllocator, OUT ALLOCATOR_PROPERTIES
* pProp)

The DecideBufferSize function is implemented by the output pin to initially decide

on the buffer size and actually create the buffer. Now that the filters can be connected,

they now have to be able to transfer the data. The input pin contains a function called:

HRESULT CInputPin::Receive (IN IMediaSample * pIMediaSample)

All media in DirectShow use the IMediaSample to send samples from one filter to

another. IMediaSample provides the interface to the media sample. Recall that a COM

interface is a collection of functions with no direct access to data. In order to access the

data, the data must be obtained through function calls. The IMediaSample interface is

more or less a wrapper interface that contains a means of accessing the raw data through

function calls.

HRESULT GetPointer(BYTE **ppBuffer);
LONG GetActualDataLength(void);

GetPointer returns a pointer to a byte array, which contains the media sample data.

This function requires another function, GetActualDataLength to return the length of the

byte array. Other important information is given by the interface using the functions,

 78

HRESULT GetTime(REFERENCE_TIME *pTimeStart, REFERENCE_TIME *pTimeEnd);
HRESULT IsSyncPoint(void);

GetTime returns the start and end time of a sample in a 100 nanosecond time scale.

For video this would be the start and stop time when a sample should be displayed. Keep

in mind that all video is, is a continuous stream of bitmaps being displayed at a constant

rate. IsSyncPoint returns true if the media is a synchronization point. A synchronization

point is a media sample that does not require a previous sample to play correctly. All

audio samples are automatically synchronization points. Some video encoder use

temporal encoding. This encoding compresses video frames by having a key frame that

contains all of the image data. Frame following the key frame are prediction frames

which uses the previous frame data and information on the data that changed to generate

the subsequent frame. A key frame is a synchronization point.

The COutputPin class contains a function called Deliver that is used to transfer the

data to the next filter. The Deliver function is implemented by the base class.

HRESULT Deliver(IMediaSample *pSample);

4.5.2.4 Summary of Creating a Filter

A filter can be created by first creating the structures and variables and copying over

the base code required for COM objects. Then the filter classes CFilter, COutputPin, and

CInputPin are created by inheriting base classes that are provided in the SDK. Any

functions that are pure virtual in the base classes must be overridden with the appropriate

code. At this point, the filter can be compiled and be used to simply transfer data.

Although no functionality is added to the null filter example, simple transforms are easy

to add (such as changing the contrast of the video).

 79

This section covers the basics of creating a simple transform filter. The other types

of filters, Source and Renderer, are created slightly differently using different base

classes and require extra functionality. Even though there are more complex filters, this

section covers all the basics that are required for every type of filter, such as initial

creating, pin media type and allocator negotiation, and data transfer.

 80

Chapter 5 Media Streaming Architecture

This section presents the general architecture of the media streaming server and

client. The media includes both audio and video. The general architecture of the media

streaming software is shown in Figure 5-1. The media streams are captured, encoded,

packetized and then buffered into the server. The server is responsible for creating the

connection between the server and the clients. If there are any clients connected to the

server, it sends out the media packets to the clients. The clients place all the packets into

buffers, at which point the packets are combined into their original form. A periodic

check occurs that verifies whether all the packets have been received correctly. If any are

missing, the client can issue resend requests to the server. The media is then

synchronized (audio and video synchronization) and sent to the decoders, which passes

the media to the renderers.

There are three components to the overall architecture, the server, the client and the

transport layer. The server includes everything used to capture the video streams as well

as any connection and streaming functionality. The client includes receiving completed

media samples, synchronizing them and having them play. The transport layer is the part

which receives media samples from the server, forms packet for the server, receives the

packets at the client end, recombines them and makes them available for rendering.

Because the transport layer is a major component of both the server and client and entails

most of the interesting work in the thesis, it is considered its own component.

 81

Control

Video stream

Audio stream

Control

Video Stream

Audio Stream

Audio/Video

Audio rendering

Video rendering

Audio decoding

Video decoding

Buffer monitor Connection

Audio buffering

Video buffering

Client

Buffering and
streaming

Buffering and
streaming

Connection

Server

Audio data

Video data

Audio encoding

Video encoding

Audio capture card

Video capture card

Figure 5-1 General architecture

5.1 The Transport Layer

The media streaming application is designed to evaluate the transport layer. The

purpose of the transport layer is to have the network connection between the server and

client be as close as possible to having the video and audio capture cards directly

connected to the client computer and streaming media directly to the video and audio

cards. Factors that evaluate how well the transport layer simulates a direct connection

include the latency, bit rate and frame loss probablity.

 82

If a live media stream is created on a local machine its latency is near zero. Video

is normally at 30 frames per second and this translates into a frame every 33ms. That

means that for stream to be continuous without missing any frames, the processing time

on average has to be less then 33ms. On a local machine the bit rate can be very high

because all data transport is done in local memory or on hardware buses both of which

have very high bandwidths. The frame loss on a local machine should be zero as nothing

should be lost.

When transporting data over the network various problems may occur. Latency can

be relatively high compared to local memory transport. However, the latency of a

wireless network is no where near the high latency of the Internet. The bandwidth of a

wireless network is also limited compared to a local machine. There is also the potential

for frame losses over any kind of network including in particular a wireless one. The

desired result of the transport layer is to best simulate the local memory transport. The

transport layer should prioritize compensating for the frame loss by having it as close to

zero as possible. Next, the latency should be low, but not so low as to not have enough

time to request a frame resend if one gets dropped from the network. To maintain high

broadcast quality, the transport layer should use up as much of the network bandwidth as

possible. However, it should not use all of it, to allow for any necessary resend request

and control messages that must be sent.

The transport layer can be thought as a virtual local memory transport. It should

seamlessly transfer the data across the wireless link and reproduce a synchronized media

stream, albeit with higher latency. To do this the transport layer requires a packetizer, a

packet header format, server, and client buffering and synchronization.

 83

5.1.1 Software Architecture of the Transport Layer

5.1.1.1 Header Format

Each media sample is received from the DirectShow filters in the form of an

IMediaSample. IMediaSample is an interface that is used to pass any kind of media

across DirectShow filters. The interface contains functions to obtain all the data that is

contained in the media sample. The interface is also versatile as it has functionality and

options to include all the information that any possible media sample requires. Although

there are more fields contained in IMediaSample then shown below, the following

discusses fields that are relevant to our discussion.

1. The actual data: This is the video or audio media sample (it is compressed).

2. The data length: The length of the video or audio media sample.

3. Start and stop times: The time in units of 100 nanoseconds of when the media

sample should be played. This is used for synchronization.

4. Synchronization point: A flag that is enabled if the media sample is a

synchronization point. That is if it is a compressed video frame, it is a

synchronization point if it is a key frame. All audio frames are synchronization

points.

A media sample can be any size. There is an ideal size that the media sample should

be packetized. Since the data is being sent as UDP packets, the maximum packet size

 84

should be the maximum size of the payload of a UDP packet. Because most video

samples are larger than the maximum packet size, the sample has to be split up into many

packets and then recombined into the original sample by the receiver. In addition to all

the information that is obtained from the media sample, the following additional

information should be stored. (This is very similar to real time protocol [Perk03] except

the session ID is not required):

1. Packet identifier: This identifies that this packet is a media stream packet.

2. Packet index: The index of the packet (each frame increments the index by one)

so it could be placed in the buffer at the correct place.

3. Check sum: This can be used to detect packet errors but used mostly for

debugging as UDP has its own error checking.

4. Current packet fragment: Since media samples may be split into many packets

this stores the fragment index so all of the fragments can be correctly recomposed

into the original media sample.

5. Total number of fragments: This indicates how many fragments compose the

entire media sample. It is used mostly to detect when a media sample is missing

some of its fragments.

6. Resend flag: If a particular packet is being resent because it did not arrive the

first time at the client this flag is set.

 85

5.1.1.2 The Packetization Process

The process of packetization is as follows. The packetizer receives the media

sample. It then obtains all of the information from the media sample as required (start

and stop times, etc…) and does all other preprocessing such as generating the checksum.

It then separates the sample into as many packets as are required. Each packet has its

own header that contains the complete information about the media sample. The server

periodically checks if any packets are available, and if so it sends them out in turn. The

client then receives the packets and has to recombine them.

The entire process is not that complex but the use of good software engineering

practices can simplify the implementation of the process significantly. The packetizing

process is very similar to the depacketizing process. To take advantage of this, both the

client and server use the same packetizing class. It is actually composed of two classes

for modularity sake. The header class has all the functionality to generate and parse the

headers for each packet. The packetizer class has all of the functionality to both generate

and recombine packets. The packetizer class inherits the header class, and then the

packetizer class is inherited by the buffer class, whether it beoutgoing or incoming (they

are different as the incoming buffer is more complex). For this to work, both the

outgoing and incoming buffers use the same data structure as defined in the packetizer

class to form their circular buffers. This is shown in Figure 5-2.

 86

Render MediaClient receives stream

Header class

Packetizer class

Incoming buffers

Server stream packets Incoming data

Header class

Packetizer class

Outgoing buffers

Figure 5-2 Packetizing class

This approach has the following advantages:

1. The same code is used in both the server and client thereby speeding up the

development process.

2. The packetizer class contains both the code for packetizing and recombining,

which means it can be tested separately of any network connection to see if the

packetizing/recombining process maintains data integrity. If there are any bugs in

 87

the code, they are discovered during the development of this class, rather then

when the data is being sent across a network, which would be far more difficult to

debug.

3. Any changes to the header format are made much easier by the modular

architecture. All of the header information is added by the header class as it is

required, so only a few code changes can change the header format for both the

client and the server. Other classes are oblivious to the changes and do not need

to be altered in any way.

The actual process of packetizing the data is explained below. Note that some

information on how the buffering works is oversimplified and explained later in more

detail.

1. The media sample is received, included with the data is the data length, start and

stop times and synchronization point.

2. The outgoing buffer allocates a data block to store the packets, and calls:

bool Packetizer::InsertData(BYTE *Data, int Length,

 LONGLONG Start, LONGLONG End, int IsSyncSource,
 Packetizer::DATABLOCK &DataBlock)

3. First the relevant data is added to internal variables in the header class using

function calls:

 void rtp_SetSyncSource(int IsSyncSource);
 void rtp_SetPacketSize(int PacketSize);

etc (more set function calls)

4. Then the data is separated into appropriately sized data chunks with each chunk,

now a packet, getting its own header by making the following function call:

int rtp_AddHeader(BYTE *&buffer);

 88

5. The packets are stored, in order, in the same data block in a contiguous space in

memory and are now ready to be sent out.

6. The server periodically checks to see when data is available to send and sends out

the packets as soon as possible.

7. The client receives the data, verifies it is a media packet by checking the header.

8. The packet is then placed/recombined into the buffer with a call to:

Packetizer::EnterFragment(BYTE *Msg, int Length,Packetizer::DATABLOCK &DataBlock)

9. This function uses the header class to parse out all of the header information

10. The header class parses out the header and stores the information in internal

memory variables that can be retrieved using the function calls:

int rtp_ParseHeader(BYTE *&buffer);
void rtp_GetSyncSource(int &IsSyncSource);
void rtp_GetPacketSize(int &PacketSize);
etc (more get function calls)

11. When all of the fragments of a packet have arrived and have been recombined the

media sample is ready to be sent to the decoder.

5.1.1.3 Outgoing Buffer

The buffering used in the server and client is required for the recovery of lost

packets. The buffer size, in terms of the number of media samples, must be large enough

to account for the time it takes for the client to recognize a lost packet, send a resend

request and receive the missing packet. The optimum size of the buffer is not important

in the architecture discussion, but, the buffers must provide a way to increase in size if

required.

Normally, the outgoing buffer would not need to be large because it can be assumed

in a LAN environment that the data packets would be sent out nearly immediately. If

 89

there are any problems, such as congestion for more then a small time period, this

would cause much larger problems in terms of overall bandwidth use, so this situation

will not be discussed here.

The outgoing buffer is required by the resend mechanism. If the client request that a

packet be resent, the server must have the packet available somewhere, otherwise it

would not be able to resend it. The outgoing buffer is implemented as a circular buffer.

Each data block in the buffer contains information on the packets it is storing, which

makes it easy to find the packet required for a resend. When loading and retrieving

packets from the circular buffer, the read and write indexes are constantly changing. At

no time is the data actually deleted. The buffers data is only overwritten when the write

index loops around, the buffer. As long as the buffer has not looped around, the packet

will still be available for a resend. The outgoing buffer size should be made

appropriately large, so the buffer will not over write any packets that may be required to

complete a resend request.

The outgoing buffer is fairly simple with the only complexity being fulfilling out

resend request. Key functionality is as follows:

void InsertData(IMediaSample *pSample)
bool GetNextPacket(BYTE *Data, int &Length);
void IncrementNextPacket();
void ResendPacket(int TotalPacket, ULONG PacketIndex, int FragmentIndex);

InsertData is the function that is used to insert a media sample into the buffer.

GetNextPacket is used to get the next packet to send if one is available. If the packet has

been successfully sent, IncrementNextPacket is called to increment the buffer.

ResendPacket is called if the server has received a resend request. It handles the search

of the entire buffer for the missing packet. To prioritize resent packets, the outgoing

 90

buffer actually consists of two buffers, one for resent packets and the other for new

packets. The resent packets are given priority because it is deemed that packets that are

being resent require more timely delivery than new ones.

5.1.1.4 The Incoming Buffer

The incoming buffer is more complex than the outgoing buffer. It is responsible for

recombining media samples from packets and issuing resend requests if any are missing.

A packet is entered into the buffer with a call to the OnReceive function:

void OnReceive(BYTE *Data, int Length);

This function receives the packet as a byte array. The first thing the function does is

call the header function rtp_ParseHeader, after which the packet and fragment index can

be obtained. If all the packets are received in order without any losses, all the function

has to do is enter the packet into the next available data block. However, since packets

can be lost, there might be empty spaces in the buffer that might later be filled with

packets from a resend request. Because of this, packets must be entered by their packet

index.

The algorithm that finds where to place the packet is as follows:

1. A search occurs of the entire circular buffer to see if the received packet’s index

already exists somewhere in the buffer.

2. If it does exist, it knows where to place the packet.

3. If it does not exist, it takes a look at the last packet in the buffer, and based on the

packet index of the last entry, it can Figure out where to place the new packet.

 91

4. If the new packet is the next packet counting up from the last packet that is entered,

the spot is found.

5. If the new packet is not the next packet, rather than allocate the next available spot, its

spot in the circular buffer is allocated according to an offset. The offset is calculated

as the current packet index subtracted from the last packet index in the buffer.

6. Any block in the buffer between the previous last packet and the new packet must be

correctly initialized to its proper packet index, so that when the resend request occurs

those packets have a place to be entered.

7. Once the correct spot has been determined, the EnterFragment function is called from

the packetizer class to enter the packet into the buffer.

There has to be some sort of mechanism to check that the buffer is being filled

correctly and to issue any resend requests if there are missing packets. The function that

does this is called VerifyIntegrity. The function uses the following algorithm:

1. Check every buffer entry between the read and write indexes of the circular buffer.

2. If an entry has zero size, it means that that particular packet was never received. It

has been only entered in the buffer because a packet with a higher index was inserted

further down the buffer. In this case the entire packet is missing. Send a resend

request for the entire packet.

3. Otherwise, if the buffer entry the function is checking is the last one in the buffer.

Check that all the fragments in the packet have been received up to the last one that is

entered. The packet might not be complete but everything up to the last fragment that

 92

is entered should exist. If any in-between packet fragments are missing, send

resend request only for these fragments.

4. Otherwise, for every other buffer that does at least partially exist, and is not the last

one, the function knows that the entire packet with all its fragments should be

complete. If the buffer entry is missing any fragments, send a resend request for that

fragment.

In all instances, before sending a resend request ,the algorithm checks a countdown

timer. The VerifyIntegrity function is run asynchronously at a high rate. A countdown

timer on individual buffer entries prevents resend request from being sent for the same

packet every time the VerifyIntegrity is run. After a resend request is issued, a

countdown timer is set to a specified amount that is larger that the time required for the

resend request to be fulfilled by the server (so bandwidth would not be wasted on

repetitive request). Also, to compensate for the possibility of out of order packets, the

countdown timer could be set by default to a certain amount of time. This would mean

that a resend request would not be immediately issued for a missing packet to give it an

opportunity to arrive which could be useful if there is a possibility of out of order

packets.

The incoming buffer makes a best effort attempt to always containing the next

available media sample. The function that is used to obtain the next sample is:

bool GetNextBuffer(DATABLOCK *&DataBlock);

This function returns the next available media sample in the buffer.

 93

There are more complex resend request mechanisms possible. One example

[JaEl98] checks if the retransmission attempt would have enough time to reach the client.

It is also possible to prioritize resends of the video key frames which are far more

important then the normal video frames. If the resend request does not arrive in time to

be played, the entire video frame is dropped. This is done to prevent the decoder from

quitting due to an error. In general, depending on the decoder, there can be some

resilience when part of the data is missing [Tall98]. However, due to the way a frame is

compressed, if one byte is missing the entire frame may be lost.

5.2 Server Architecture

The server application contains the following functionality:

1. Interface to the DirectShow filters to obtain media samples and change settings.

2. The ability to receive media samples from the DirectShow capture streams.

3. A mechanism to allow clients to connect to the server and register to receive the

media streams.

4. Ability to packetize, buffer and send outgoing media streams.

5. Contain a GUI to display various statistics on the live streaming process.

 94

Main window class
(application starting point)

Connection manager Outgoing buffers (x2)

Header class

Packetizing class

DirectShow manager

Input Media Streams

Console Display

Figure 5-4. Server architecture

Figure 5-4 shows the software architecture of the server. The architecture uses a

modular design. Each class has its own distinct functionality. This means each class is

not too large or complex, and is easily modifiable. Overall there are five main C++

classes, DirectShow Manager, Connection Manager, Console Display, Outgoing buffer

and the Main Window. The DirectShow manager handles all interfacing with the

DirectShow filters, including receiving the media streams. The Outgoing buffer is

described in the previous section. The Connection Manager provides all network

transport functionality. This includes everything involved with setting up the connections

with the clients and sending out the media streams. The Console Display is used for

debugging and displaying status messages. The main window class is necessary in

Windows programming as it starts up the application and receives all user event

messages.

 95

5.2.1 The Main Window Class.

All applications that are programmed for Windows contain a Main Window class.

This is the class that is the first one created when the program is run. It therefore is

responsible for initializing all other classes. The Main Window class is also the one that

receives all of the event messages. In Windows, asynchronous events (e.g clicking on a

mouse, key strokes, socket receiving a message, etc…) are routed to a window event

handler and cannot be directly sent to an arbitrary class. The Main Window class is

responsible for receiving these messages. Examples are the start and stop stream

messages, and the adjust bit rate messages.

Usually it is desirable to minimize any functionality placed in Main Window class.

It is tempting to put much of the functionality into this class because it is the one that

receives the event messages and it seems easier to simply put the event functionality into

this class. However placing too much functionality, especially functionality from

different parts of the program usually leads to a confusing mess of code. The only real

functionality that the Main Window is given is to gather statistics and paint them on the

screen. The Main Window is the one that receives repaint event messages and it has

access to all of the other classes, therefore it is the logical place to put the statistics

drawing functionality. Otherwise, the main window class is kept simple. It contains

event handlers, most of which offload the functionality to other classes, initialization

procedures and statistics gathering and painting routines.

 96

5.2.2 The DirectShow Filters

The server through the DirectShow manager, loads up a filter graph that streams the

media to the DirectShow manager. It is simpler to use Graph Edit to make the filter

graph and then load it up, rather then constructing it by code. The filter graph used is

shown in Figure 5-3.

The filter graph uses the SoundMax Digital Audio 0001 filter to capture the audio

and then sends it to the LAME Good Edition MP3 encoder. This is then sent to the

SendFilter. On the video side, the ATI TV Wonder Pro is used to capture the video. It is

sent to the Microsoft Windows Media 9 filter, which encodes it into WMV (Microsoft’s

MPEG-4 format). This is then sent to the SendFilter. The filter graph also contains a

preview window, which is useful for previewing the video stream. It also contains two

additional filters, SoundMax Digital Audio and ATI TV Wonder Pro Tuner. These can

be used to alter some of the preprocessing settings, such as input volume and determining

which channel the tuner is capturing.

The SendFilter is a custom filter that is used to send the streamed media to the

DirectShow manager. The filter is very similar to the memory copy test filter explained

earlier. The functionality of the SendFilter is to connect to the audio/video encoders and,

upon receiving media samples from them, to pass the samples to the DirectShow

manager. SendFilter does not contain any other processing. To pass the samples, the

SendFilter uses callback functions. A callback function is when a function is maintained

as a pointer, and it can be called just like a normal function. In this case, the DirectShow

manager passes to the SendFilter two callback functions, one each for audio and video.

These functions are used to pass the samples.

 97

To do this SendFilter has the following two functions:

STDMETHODIMP CSendFilter::SetCallback(SAMPLECALLBACK Callback)
{
 m_callback = Callback;
 return NOERROR;
}

STDMETHODIMP CSendFilter::SetCallbackA(SAMPLECALLBACK Callback)
{
 m_callbackA = Callback;
 return NOERROR;
}

Note that functions and variables with an extra “a” are the audio version as there are

two streams each with the same functionality but with different names. m_callback and

m_callbackA are of type:

typedef HRESULT (*SAMPLECALLBACK)(IMediaSample * pSample);

CALLBACK m_callback;
CALLBACK m_callbackA;

The callback functions have an argument of type IMediaSample which, as explained

before, contains all of the media data required. These function are used to pass the media

samples as shown below:

HRESULT CSendFilter::Receive (IN IMediaSample * pms)
{
 if (m_callback != NULL)
 {
 // use the call back function
 m_callback(pms);
 }
 return S_OK;
}

// audio version of receive
HRESULT CSendFilter::ReceiveA (IN IMediaSample * pms)
{
 if (m_callbackA != NULL)
 {
 // use the call back function
 m_callbackA(pms);
 }

 return S_OK;
}

The SendFilters, Receive and ReceiveA are called in a similar way as Receive is

called in the memory test filter. The video input pin calls the Receive function when it

 98

has received a media sample, and the audio input pin calls the ReceiveA function when

it has received a media sample.

Figure 5-3 Server filter graph

5.2.3 The DirectShow Manager

The DirectShow manager handles all of the functionality to interface to the

DirectShow filters that create the media stream. Included in which is the custom filter,

SendFilter, that enables the media streams to be captured and then sent to the DirectShow

manager. Two functions that are of interest are the initialization function and the change

 99

bit rate function. The first thing the DirectShow manager does is to runs its

initialization function Init:

 void IDirectShow::Init()
 {
 // start up com
 hr = CoInitializeEx(NULL, COINIT_APARTMENTTHREADED);

 if (hr != S_OK)
 {
 AfxMessageBox("Warning cannot start up COM");
 return;
 }

hr = CoCreateInstance(CLSID_FilterGraph, NULL, CLSCTX_INPROC_SERVER, IID_IGraphBuilder, (void
**)&m_pGraph);

 if (hr != S_OK)
 {
 AfxMessageBox("Warning cannot initialize the filter graph");
 return;
 }

 hr = LoadGraphFile(m_pGraph,L"c:\\profiles\\Server.GRF");

 m_pGraph->FindFilterByName(L"SendFilter",&m_pGrabber);
 m_pGraph->FindFilterByName(L"Microsoft Windows Media Video 9",&m_pEncoder);
 m_pGraph->FindFilterByName(L"ATI TV Wonder Capture",&m_pAtiCapture);
 m_pGraph->FindFilterByName(L"Video Renderer",&m_pPreview);
 m_pGraph->FindFilterByName(L"ATI TV Wonder TV Tuner",&m_pTVTuner);
 m_pGraph->FindFilterByName(L"LAME Good Edition",&m_pAEncoder);

 IGrabberBuffer *pGrabber;
 hr = m_pGrabber->QueryInterface(IID_IGrabberBuffer,(void **)&pGrabber);
 hr = pGrabber->SetCallback(AppCallback);
 hr = pGrabber->SetCallbackA(AppCallbackA);
 pGrabber->Release();
 }

The Init function starts up by linking to COM, which is required before using COM.

It then creates an instance of a filter graph and loads up the interfaces of the filter. The

interfaces are stored for later use, as some are useful in configuring the properties of the

media stream. The IGrabberBuffer, which is the interface to the custom SendFilter is

loaded up and two functions SetCallback and SetCallbackA are called.

The callback mechanism is not entirely straight forward because call back functions

are not entirely compatible with c++. When using c++ functions, to call them both, the

function and the member class have to be known. To work around this problem, static

 100

functions that are not members of the class are used as the callback functions and they

call the class’s member functions. This is shown in the following code where a pointer to

the member class is used to call the member function. All the member function does is

insert the media sample into the outgoing buffer, which handles all of the packetizing:

// static call back allows it to latch on to the grabber filter
HRESULT __stdcall AppCallback(IMediaSample * pSample)
{
 return pIDirectShow->DataReceived(pSample);
}

HRESULT __stdcall AppCallbackA(IMediaSample * pSample)
{
 return pIDirectShow->DataReceivedA(pSample);
}

HRESULT IDirectShow::DataReceived(IMediaSample *pSample)
{
 g_OutputBuffer.InsertData(pSample);
 return S_OK;
}

HRESULT IDirectShow::DataReceivedA(IMediaSample *pSample)
{
 g_OutputBufferA.InsertData(pSample);
 return S_OK;
}

The DirectShow manager also has a mechanism to change the bit rate of the video

stream. This is done through a function called ChangeBitRate:

 void IDirectShow::ChangeBitRate(int RateIndex)
 {
 m_pIControl->Stop();

 BYTE PTempState[2976];
 int StateNum = 2976;

 char FileName[100];
 if (RateIndex == 0)
 sprintf(FileName,"c:\\profiles\\enc80.prf");
 else if (RateIndex == 1)
 sprintf(FileName,"c:\\profiles\\enc85.prf");
 else if (RateIndex == 2)
 sprintf(FileName,"c:\\profiles\\enc90.prf");
 else if (RateIndex == 3)
 sprintf(FileName,"c:\\profiles\\enc95.prf");
 else
 return;

 LoadState(PTempState,StateNum,FileName);
 hr = m_pEncControl->SetState((void *)PTempState,StateNum);

 m_pIControl->Run();
 }

 101

Although there are several generic COM interfaces that allow for the bit rate to be

changed, the video encoder used provides only one that works. The pointer to the

interface m_pEncControl allows preset profiles to be loaded into the encoder. This

interface is created in the Init function. Eight such profiles are created that have various

different quality settings. These have different bit rates and key frame rates.

ChangeBitRate simply loads up the desired profile and loads it into the encoder. Note

that the function stops the media stream and then restarts it. Also when changing the bit

rate the client must be notified to tell it to flush its buffers, stop and re-start.

5.2.4 The Connection Manager

The connection manager handles all of the networking. It uses UDP sockets

exclusively. It has one socket and also the corresponding event handler

OnQueryRecieved, that receives all incoming connection and resend requests. When a

client requests a connection, the client IP address is added to the list of clients. When

each client connects they are allocated their own streaming sockets. This approach is

found to be more reliable under congestion conditions due to each socket having its own

internal buffer preventing overflow. The connection manager has two worker threads,

one for each stream, which constantly check the outgoing buffers for any packets and if it

finds any, it sends them out to the clients.

 102

5.2.5 Outgoing Buffers

There are two buffers used to send the data, one for the audio and one for the video.

They operate exactly as explained in the transport section.

5.2.6 GUI, Console and Statistics

The GUI of the server is shown in Figure 5-4. The GUI contains a preview window

of the video stream, a console that displays status messages, and various statistics. The

only controls available are to start and stop the stream, and to change the video quality

and key frame rate, thus lowering or increasing the bit rate.

Figure 5-4 Server GUI

 103

5.3 Client Architecture

The Client contains the following functionality:

1. The ability to send a media stream to the DirectShow decoders and renderers.

2. The ability to receive media samples from the server, and form them from packets

into media samples.

3. The ability to buffer the samples and request resends if any are missing.

4. The ability to synchronize the video and audio streams.

5. A GUI to display various statistics on the live streaming process.

The functionality of the client is essentially the inverse of what the server does. The

architecture of the client, shown in Figure 5-4, looks very similar to the architecture of

the server. The only real difference is that the client receives media streams from a

network and then sends them to the DirectShow filters, whereas the server does the

opposite. Several classes are reused between the server and the client (the packetizer,

header and console) and the rest are similar. The most important difference not discussed

so far is the synchronization mechanism, which will be discussed in detail. Most of the

other classes are similar to the server’s so they will not be described in as much detail.

 104

Console display

Incoming Media Streams

Connection manager

Packetizing class

Header class

Incoming buffers (x2) DirectShow manager

Main window class
(application starting point)

Figure 5-4 Client architecture

5.3.1 The Main Window Class/Connection Manager.

Since the connection manager for the client is rather simple, its code is included in

the Main Window class. The only connection based responsibilities for the client are to

notify the server that it requests certain media streams, to send resend requests, and to

receive the media streams. When incoming data is received, it triggers an event handler

which routes the data into the incoming buffers. There are two threads, one to handle

each of the audio and video. These take data out of the buffers and send them to the

DirectShow filters to be played.

 105

5.3.2 The DirectShow Filters

The client also loads up the filter graph from a file. There are five filters in the graph

as shown in Figure 5-5. Network Receiver is a custom filter that receives media samples

from the client applications, and sends them to the decoders. WMVideo Decoder DMO

decodes the video and MPEG Layer-3 Decoder decodes the audio. The Full Screen

Renderer is used to display the video. To debug, a windowed renderer can be used as it

does not take up the entire screen. The Audio Filter is a custom filter designed with low

latency that replaces the generic Audio Filter that is available as part of DirectShow.

Figure 5-5 Client graph

 106

5.3.2.1 Media Synchronization

The Network receiver is considerably different from the memory copy example. The

main difference is that it is a source filter. The source filter has quite a few extra

responsibilities. Each output pin of a source filter represents a separate media stream. In

this case we have two pins one for the audio one for the video. Each media stream is

considered running in its own thread. A media sample appears at the output pin and is

sent to the upstream filters. After the sample is finished being rendered, control returns

to the source filter to stream another sample. This means that the Network Receiver is

responsible for the timing of each stream.

The Network Receiver is also responsible for synchronizing the audio with the video

streams. The client sends it video and audio samples that are already closely timed.

However, the timing is not perfect. The client cannot do the timing exactly because it

does not have any control over the hardware buffers. The main problem with

synchronization is that the default Audio Filter has an underdetermined amount of

buffering. To solve this, the custom Audio Filter is created with a set and measurable

amount of buffering.

The video is easy to synchronize because the video is a collection of bitmaps being

played continuously. It is very easy to speed up or slow down the video. However, it is

more difficult to speed up audio, as some sound processing has to occur to accomplish

this. To slow down audio it is possible to delay playing a sample, but that might leave

noticeable gaps in the audio.

The process used to synchronize the audio and video is based on matching the video

to the audio in a way that is similar to [LiZa04]. The audio is played continuously with

 107

the video being adjusted to match the audio. The custom audio filter returns the time

stamp of the audio being currently played. The video time clock can then be set to this

time. This allows the video to either be delayed or sped up to match the audio. This

allows the video to be within one sample time of the audio. This leads to what appears to

the user to be perfect synchronization.

5.3.2.2 The Network Receiver

The Network Receiver is the source filter for the filter graph. Some of its processing

is similar to that of the memory copy filter. The way it connects to other filters is

identical to the memory copy filter. The big difference between the two is in the way the

network receiver has to synchronize the media streams. This functionality is provided

through Network Recievers custom interface:

 HRESULT STDMETHODCALLTYPE PushMedia(IMediaSample *pSource) = 0;
 HRESULT STDMETHODCALLTYPE PushMediaA(IMediaSample *pSource) = 0;
 HRESULT STDMETHODCALLTYPE GetLastTimeStamps(LONGLONG &Video, LONGLONG &Audio) = 0;
 HRESULT STDMETHODCALLTYPE GetBufferSize(int &VideoSize, int &AudioSize) = 0;
 HRESULT STDMETHODCALLTYPE GetCurrVClock(LONGLONG &Time) = 0;
 HRESULT STDMETHODCALLTYPE SetCurrVClock(LONGLONG Time) = 0;
 HRESULT STDMETHODCALLTYPE FlushBuffers() = 0;

To send the media to the filter there are two functions, PushMedia and PushMediaA.

The first one is sent video samples and the second one audio samples. These samples are

then sent to the output pins to be transferred to the connecting filters. Because the filter is

a source filter, the filter inherits the CSource base class and the output pins inherit the

CSourceStream class. The CSourceStream class has a built in thread which is used to

stream the media samples. Most of the threading functionality is hidden inside the base

class. To expose the thread, the FillBuffer function is used. This function is a pure

virtual function and must be implemented. When the graph is initially run, the FillBuffer

 108

function is called. This allows the output pin to literally fill the buffer with a media

sample and have the sample sent to the connecting filter. When the media sample has

been sent all the way to the renderer, and the renderer is done playing, the FillBuffer

function is called again. In this way media samples can be continuously played. This

process is shown in Figure 5-5.

DirectShow has an internal mechanism to synchronize the video and the audio to a

single clock. It uses an internal clock, typically the audio card’s timer or the high

resolution timer. Usually the video sample includes the start and stop time. The internal

DirectShow clock would have the video play for the specified time, and then return to the

FillBuffer function once the samples end time has elapse. The audio would be using the

same clock. Thus, ideally, using the internal mechanism, the two media streams would

be synchronized. The only problem is that the clock is not designed for live streaming

and it is difficult to work with. As well there is insufficient documentation on how to use

the clock. Because of this a custom clock is created using the high resolution clock in the

computer.

The operation of the clock is based on the two functions GetCurrVClock and

SetCurrVClock. The client takes a look at the last audio sample played and then

compares the sample’s time with the time of the last video sample. If they are

significantly different (more then one frame out) the video clock is set to the time of the

last audio sample played using SetCurrVClock.

Since the internal DirectShow clock is not used, the video timing must be controlled.

This is done by the following lines of code, located inside the FillBuffer function. The

Sleep command pauses the function until the specified time has elapsed.

 g_JClock.SetTimers(0,StopTime);

 109

 while (!g_JClock.CheckTimer(0))
 {
 Sleep(1);
 }

The audio does not require a clock. The audio samples represent a continuous audio

sound rather then a collection of bitmaps to be displayed at certain time intervals. To

make use of this, the custom Audio Filter is used, and the Network Receiver simply sends

the audio samples without any delay as soon as they are available to the connecting

decoder filter.

Figure 5-5 Playing example

Sample done playing, base class calls fill

Compressed Uncompressed

Video Renderer
Play the media

Decoder
Decodes the media

Network Receiver
Fill buffer with media

5.3.2.3 The Audio Filter

Pulse Code Modulation (PCM) is used as the audio format inside of a computer. The

audio capture card measures the amplitude of the audio at fixed intervals and converts

these into binary values. To play audio on a computer, the PCM data has to be loaded

into the sound card’s memory buffer. There are two ways to stream audio into the sound

card. One is using a streaming buffer, the other is using a static buffer.

A static buffer is used to play sound for a short duration. The PCM data is loaded

into the sound buffer, and then the sound card is told to play the content of the buffer.

 110

The buffer is played once. For streaming sound a streaming buffer is used. The

streaming buffer contains a read and a write point. The buffer is continuously filled at

the write pointer, while it is being played at the read pointer. This kind of buffer is often

used for music or other continuous audio. Because the buffer cannot be infinitely large, it

is implemented as circular buffer with built in looping. (It is interesting to note that when

a computer locks up while playing music, the music seems to loop continuously even

though the computer stopped working. The reason for this is that a streaming buffer is

used and the sound card is looping through the buffer rather than stop playing it.)

The advantages of a streaming buffer is that for continuous sound, the sound will not

be disjointed as it might be with a static buffer. Using a static buffer, the buffer is loaded,

played, stopped and then must be loaded again. If there are any delays in the system in

writing to the buffer they can be noticeable. Using a streaming buffer, however, means

that some audio data needs to be pre-buffered before the buffer can be played. This adds

to the latency in the system. One of the reasons for creating a custom Audio Filter is that

the latency can be kept to a minimum of one sample being pre-buffered.

The Audio Filter itself is quite simple. It inherits CBaseRenderer. A render filter is

much simpler than the other types because all it has to do is play a media sample, and it is

restricted to one pin. As usual, the base class handles most of the work with the only

two functions required to be overridden being DoRenderSample and CheckMediaType.

The base class includes the input pin with the CheckMediaType pure virtual function.

This being the only noticeable inclusion of having the input pin combined with the main

class. The DoRenderSample does all the work. It receives a media sample to be played.

An abbreviated version of this function is shown below. Note that it is pseudo code and

 111

is missing some details. Note the “if” statement towards the end where the sound

buffer only starts playing once there are enough samples in the sound buffer:

HRESULT CAudioFilter::DoRenderSample(IMediaSample *pMediaSample)
{

 HRESULT hr;

 // get sample information
 DWORD Length = pMediaSample->GetActualDataLength();

 BYTE *pData;
 pMediaSample->GetPointer(&pData);

NumSamples++;

 // copy in the sample
 m_pSoundBuffer->Lock();
 memcpy(lpvWrite, pData, Length);
 m_pSoundBuffer->Unlock
 if (!m_bIsPlaying && (m_NumSamples >= m_nBuffSamples))
 {
 m_bIsPlaying = true;
 hr = m_pSoundBuffer->SetCurrentPosition(0);
 hr = m_pSoundBuffer->Play();
 }

return S_OK;

}

The rest of the functionality of the filter concerns initializing the DirectSound device

and buffer to use the sound card and the ability for the filter to track timestamps and

return them using the custom interface method GetTimeStamps. The code to do this is

not that interesting and is not shown.

Generally speaking, losing audio packets is quite bad. When this occurs various

things can happen such as no audio for a given point in time, repeating audio, etc…

Some techniques to mask the missing audio have been developed [PeHH98] but their use

is beyond the scope of this thesis.

 112

5.3.3 GUI and Statistics

Figure 5-6 The player

Figure 5-6 shows the client window. In the figure the client is set to have a 2 percent

packet drop rate. Due to the packet drop rate the resend mechanism can be observed in

the console. The Client has options to change the packet drop rate, to save or not save “I”

frames (key frames), and to disable the resend mechanism.

 113

Chapter 6 Wireless Video Streaming Experiments

This chapter describes experiments with using the media streaming software as a test

bench over two hypothetical scenarios on a standard computer network. The chapter

starts by introducing one more application, the network test utility. This utility is then

used to test the properties of different kinds of networks. To make it easier for others to

use the software, instructions are given on how to install the client and the server. Also

included, is a description of the statistics file generated by both the server and the client.

Finally, the most important part of the chapter, the two test scenarios are presented.

The two test scenarios look at the two main networking issues, insufficient

throughput and a packet loss rate. The first scenario is what happens when there is

insufficient throughput for a short period of time due to a spike in the bit rate of the

video. The second scenario examines what happens to the video quality when there is a

packet loss rate, measured by the loss of whole video frames. The two scenarios are by

no means meant to be a definitive test of different network connections, rather an

example of the testing potential of using the media streaming software on a given

network.

6.1 The Network Test Utility

To test the capacities and properties of the network, a network test utility is created.

This is similar to other commercially available utilities that test network capacities and

ping speeds such as Chariot [Athe03b]. The reason for creating a custom utility is that

 114

the socket code used is nearly identical to the socket code in the media streaming

application. So it can be used to directly correspond to the media stream performance.

Also it is modifiable and relativity easy to create.

The network test utility has two modes, Ping mode and Bandwidth test mode. It can

also be switched between client and server so only one executable is required. There are

two modes in the network test utility. The first is Ping mode. It has four options. The

first is the packet size that is send out in the ping test. The second is the packet size that

is returned in the ping test. Third is interval which is the time between successive pings,

and forth is iterations which is is how many pings. The modes are shown in Figure 6-1.

It is important to specify the data size because in a resend request, the request itself is

small but the actual resend could be the maximum packet size.

Figure 6-1 Ping mode

 115

Figure 6-2 shows the ping test in operation. Looking at the console, the server

discovers the client on the network by broadcasting out querying for a client and then

pings the client. The pings are returned and the times are stored and displayed and then

averaged. Note that for this test and all subsequent test there is no other user generated

traffic on the network and few if any programs running in the background.

Figure 6-2 Ping test operation

The bandwidth test setup is shown in Figure 6-3. There are three options. Kbytes

per second is the Kilobytes per second of traffic that the server sends out. Number of

seconds is the number of seconds of the test, and bytes per packet is the number of bytes

sent out per packet. This can be changed to simulate different packet sizes (for example

audio packets that are smaller then the maximum UDP packet size).

 116

Figure 6-3 Bandwidth test setup

Figure 6-4 shows a bandwidth test in operation. The server attempts to send over 50

Kbytes per second or as close to it as possible while keeping to the packet size

requirements. After the test is complete, the server verifies how many bytes and packets

are sent out and the client sends a report specifying how many bytes and packets it

received. Using this mode it is possible to test for the maximum bandwidth that may be

achieved across two computers.

 117

Figure 6-4 Bandwidth Test

Figures 6-5 and 6-6 show a network test verifying that the maximum bandwidth of a

wired 100Mbps connection is around 12 MBps. Note that when the network connection

is stressed, the client will no longer receive every byte the server sent.

 118

Figure 6-5 Windows network activity

Figure 6-6 Network test maximum bandwidth

6.2 Basic Network Testing

There are three possible types of networks between the server and client. One of

them is a 100 Mbps wired connection (standard Ethernet). The other two are the wireless

 119

connections. The wireless network consists of a 100 Mbps wired connection to a Cisco

aironet 1200 router connected wirelessly to a Linksys wireless USB adapter. Both the

router and the adapter can run at multiple transmissions speeds including the two speeds

that are used, 11 Mbps and 54 Mbps. These represent 802.11b and 802.11g network

types. The speed can be changed by altering the transmission speed using the router’s

configuration page. There is no option of altering between mixed mode (both g and b)

and “g” only mode but because of the high throughput it appears that it operates in only

“g” mode.

Several test are preformed on the network to provide a base line for the

experimentation later in this chapter. Explanations of the ping test and the bandwidth test

follow.

6.2.1 Ping Test

The ping test records the ping time for the three kinds of networks. Two different

ping test are used. One for sending 32 bytes forward and then 32 bytes back and the

other for sending 32 bytes forward and 1400 bytes back which is more realistic for a

resend request. There is a fair bit of variance in the ping results. Sometimes one ping

time would be several times larger then the other. This is because the response time of

the operating system can vary and there might also be other traffic on the network. The

numbers should be taken as being approximate. Each test is 25 pings in length and the

interval is 100ms. All tests are run with nothing else running on the computer at the same

time, and with no other generated network traffic. The results are shown in Table 6-1.

 120

Network type Ping response time
(32,32)

Ping response time
(32,1400)

11 Mbps Wireless 1696 uS 3300 uS

54 Mbps Wireless 1345 uS 2119 uS

100 Mbps Wired 790 uS 1052 uS

Table 6-1 Ping test average results

6.2.2 Bandwidth Test

The bandwidth test checks the maximum available bandwidth on each of the three

network types. The bytes per packet is set to 1400 and the test runs for 10 seconds. The

speeds recorded in Table 6-2 are somewhat higher then the ones referenced by Atheros

[Athe03a] in Table 6-3 as the maximum theoretical bandwidth, but overall the results are

consistent. Different equipment vendors use different chipsets, which may have

implemented the 802.11 standard, in particular the inter-frame spaces timing differently.

Network type Maximum Bandwidth

11 Mbps Wireless 1034 Kbytes/second

54 Mbps Wireless 3984 Kbytes/second

100 Mbps Wired 11648 Kbytes/second

Table 6-2 Bandwidth test

 121

Network type Theoretical maximum
Bandwidth

11 Mbps Wireless 887 Kbytes/second

54 Mbps Wireless 3813 Kbytes/second

Table 6-3 Theoretical maximum bandwidth

The next test checks to see what happens when the packet size is reduced from 1400

all the way down to 32. This is shown in Figures 6-7 and 6-8 Figure 6-8 is the same as

Figure 6-7 except it does not contain the 100 Mbps to highlight the other two

components. As the packet size is reduced, the throughput decreases. Note that the

rather large drop in throughput for the 100Mbps link is due to CPU loading. At around

the drop-off point of 200 bytes per packet, the CPU became 100% loaded and had

difficultly handling the shear number of packets.

Throughput vs Packet Size

0
2000
4000
6000
8000

10000
12000
14000

14
00

12
00

10
00 80

0
60

0
40

0
20

0
10

0 70 32

Packet Size (Bytes)

Th
ro

ug
hp

ut
 (K

By
te

s)

100 Mbps
54 Mbps
11 Mbps

Figure 6-7 Throughput vs packet size 1

 122

Throughput vs Packet Size

0
500

1000
1500
2000
2500
3000
3500
4000
4500

14
00

12
00

10
00 80

0
60

0
40

0
20

0
10

0 70 32

Packet Size (Bytes)

Th
ro

ug
hp

ut
 (K

By
te

s)

54 Mbps
11 Mbps

Figure 6-8 Throughput vs packet size 2

6.3 Media Application Installation Instructions.

6.3.1 Server Installation Instructions

In order for the server to work a capture card must be present on the computer. In

this case the capture card is an ATI TV wonder pro. The proper encoders must be

installed, so the Microsoft encoder codecs from Microsoft’s web page should be

downloaded and installed. Since the LAME audio encoder is used it has to be installed.

Before any graph file can loaded, the Send filter must be registered with the

operating system. In command prompt, the command is “regsvr32 sendfilt.ax”. A

directory must exist called c:\profiles. In this directory, several configuration files are

stored. Server.grf, the filtergraph file of the server is to be placed in this directory. Also

before the server is used, the capture card must be conFigured to the proper settings, e.g

which channel and which feed (s-video, composite) is to be used. This can be done in

Graph Edit or using any utility just to verify that the video feed is coming in. The profile

directory also must contain all of the encoder settings files, in this case enc80, enc85,

enc90, enc95, enc80b, enc85b, enc90b, and enc95b which corresponds to the 8 preset

encoder settings.

 123

6.3.2 Client Installation Instructions

The client also requires the c:\profiles directory and the codecs to be installed. The

two client filters nrecv.ax and Afilt.ax should be installed using regsvr32. The Client

graph, Client.grf has to be present. One additional file, ftype.typ is required. This file is

automatically generated by the server and specifies the codec formats that are sent so the

nrecv filter knows how to connect up to the decoder.

6.4 Server and Client statistics

This section describes the various statistics generated by the server and the client.

6.4.1 Server Statistics

The server generates a statistics file containing the statistics gathered by the server

over time. Below is an example of this file plus descriptions of each entry.

Server stats
Quality at: 80 Key frame rate at: total seconds: 2
TotalVideoBytes 5164418
TotalAudioBytes 938312
TotalIFrameBytes 668940
TotalPFrameBytes 4319038
TotalRBytes 4388
TotalIFrames 60
TotalPFrames 1533
TotalVBytes per second
1 20803
2 94383
3 102807
4 79541
…

• The second line contains information on the key frame rate and the VBR quality

percentage.

 124

• TotalVideoBytes is the total number of bytes sent out that were video including

the header bytes required to send them.

• TotalAudioBytes is the total number of bytes sent out that were audio including

the header bytes required to send them.

• TotalIFrameBytes is the total number of bytes that were video I Frames.

• TotalPFrameBytes is the total number of bytes that were video P Frames.

• TotalRBytes is the total number of bytes that were resend requests.

• TotalIFrames is the total number of I Frames used. Note that the codec might

create I Frames on a non timed interval if the scene changes.

• TotalPFrames is the total number of P Frames used.

• TotalVBytes per second shows the number of video bytes generated for each

second of the video stream. This is just to show the variance in the video stream.

6.4.2 Client Statistics

The client also generates a statistics file containing the statistics gathered by the

client over time. The file is similar to the server’s file except it contains more

information. This is because it tracks if any video and audio frames that are missing

when they should be played. Below is an example of this file plus descriptions of each

entry.

Client stats
NOTAllowingresends packetlossrateat :10
TotalVideoBytes 2989314
TotalAudioBytes 957312
TotalIFrameBytes 600200
TotalPFrameBytes 2389114
TotalRBytes 0
TotalIFrames 475
TotalPFrames 2490
TotalAFrames 2493

 125

TotalIDropped 0
TotalIBDropped 0
TotalPDropped 282
TotalPBDropped 485755
TotalADropped 0
TotalABDropped 0
TotalVMissing 276
TotalAMissing 0
TotalVBytes per second
1 38013
2 45931
3 57039
4 46640
5 39947
…
TotalAPFramesmissingpersecond
1 0
2 0
3 0
4 0
5 0
…
TotalVFrmesmissingpersecond
1 4
2 5
3 6
4 4
…

• The second line states whether or not the client is allowing resends as well as

specifying the packet loss rate.

• TotalVideoBytes is the total number of bytes received that are video.

• TotalAudioBytes is the total number of bytes received that are audio.

• TotalIFrameBytes is the total number of video bytes that are I Frames.

• TotalPFrameBytes is the total number of video bytes that are P Frames.

• TotalRBytes is the total number of bytes that are from resend requests.

• TotalIFrames is the total number of I Frames received.

• TotalPFrames is the total number of P Frames received.

• TotalAFrames is the total number of Audio frames received.

• TotalIDropped is the total number of I Frames that are simulated to be dropped.

• TotalIBDropped is the total number of I Frames bytes that are simulated to be

dropped.

 126

• TotalPDropped is the total number of P Frames that are simulated to be

dropped.

• TotalPBDropped is the total number of P Frame bytes that are simulated to be

dropped.

• TotalADrooped is the total number of audio frames that are simulated to be

dropped.

• TotalABDropped is the total number of audio frames bytes that are simulated to

be dropped.

• TotalVMissing is the total number of video frames that are missing. Note that this

number is lower then the TotalIPDropped because more then one packet for each

frame can be dropped.

• TotalAMissing is the total number of audio frames that are missing.

• TotalVBytes per second is the average number of video bytes that are played each

second.

• TotalAFrames missing per second is the average number of audio frames that are

missing per second.

• TotalVFrames missing per second is the average number of video frames that are

missing per second.

6.5 Basic Video Streaming Properties

The video streaming software is run for 60 seconds using the same 60 seconds of

video to evaluate the different encoder rates. The encoder was changed to run at five

 127

different settings from 80% Variable Bit Rate (VBR) encoding quality to 100% VBR

quality. Unfortunately, although Constant Bit Rate (CBR) encoding is quite useful to

guarantee the bit rate over time, the encoder used had a limited range for the CBR modes,

which made it unusable. Hence, no CBR rates are tested. Figure 6-9 shows the bit rate

obtained for different quality settings. Notice how significantly the bit rate increases in

certain time intervals. Also, as the quality approaches 100%, both the 100% and 95% use

a significant amount of CPU cycles. At 100% VBR, the CPU is at 100% usage, which is

bad. When the CPU is loaded to 100% usage, the encoder starts to miss frames and the

overall quality goes down. Even at 95% VBR, there are occasional compression errors

due to the CPU loading.

Figure 6-10 shows the bit rate for the 90% quality setting for 10 minutes. This

setting uses around 50% CPU cycles on average and the video quality is quite good. This

quality setting is used for further tests. Note that there is a significant amount of variance

during the 10 minutes of video. There are many reasons for this such as some video

frames are more detailed, and there is switching from the show to the commercials. Also,

the faster the motion of the video, the higher the bit rate.

The variance in the bit rate, as shown in Figure 6-10, is quite high. This setting is

unsuitable for bandwidth limited channels where some sort of peak bit rate guarantee is

required. This is unfortunate because there is no other setting to run experiments on. The

limited CBR settings available are unsuitable for testing. The encoder does have a peak

bit rate version of VBR, but it requires two pass encoding which is unsuitable for live

video. For our purposes the 90% VBR is fine and it is used in both of the two test

scenarios.

 128

Bytes per second at different quality settings

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000

1 6 11 16 21 26 31 36 41 46 51 56

Seconds

By
te

s
80%
85%
90%
95%
100%

Figure 6-9 Video quality bit rates

Bytes per second 90% quality

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1 45 89 13
3

17
7

22
1

26
5

30
9

35
3

39
7

44
1

48
5

52
9

57
3

Seconds

B
yt

es 90%

Figure 6-10 90% quality bit rate

6.6 Bandwidth Stress Test.

The first experimentation scenario addresses a very basic issue. What happens when

there is insufficient bandwidth to transmit the video at certain points in time? This

experiment uses the 90% quality VBR setting and simulated constant bit rate traffic

generated by the network test utility. The ten minutes of video used for this experiment

are the same that are uses that Figure 6-10. The level of traffic is set to 500 Kbytes per

 129

second. This value is chosen because the simulated traffic and the video added together

will reach over 1 Mbyte per second a few times and this is higher than the maximum

throughput for 802.11b. The buffers on the client end hold 5 frames, which means that

throughput disruptions of more than approximately 150ms, cannot be compensated for by

the resend request mechanism.

Difference (Server-Client) Bytes

-150000

-100000

-50000

0

50000

100000

150000

200000

250000

1 42 83 12
4

16
5

20
6

24
7

28
8

32
9

37
0

41
1

45
2

49
3

53
4

57
5

Difference (Server-Client)
Bytes

Figure 6-11 Difference in sending and receiving bytes

Figure 6-11 shows the difference between the number of bytes the server sends, and

the number of bytes the client receives. The one problem is that time indexes of the

server and the client are not aligned. What is evident however, is the differences at

around 180 and 300 seconds. These correspond to the two peaks in Figure 6-10. This is

further shown in Figure 6-12, which shows missing video frames in the same two peaks.

Note that there are other instances where a few video frames went missing but those are

probably due to the fact that it is impossible to guarantee the quality of a wireless

connection over long periods of time.

 130

In total, after 10 minutes, 181 Mbytes of video with 10 Mbytes of audio are

generated and sent. The network test utility generated 297 Mbytes of traffic with about

289 Mbytes getting through, a difference of around 7.5 Mbytes not sent due to traffic

congestion. Out of the video, 1.5 Mbytes is never received and this is after 2.6 Mbytes

were taken up by resend requests. In all 248 video frames were missing and 181 audio

frames missing.

The same experiment is run again, this time with much larger buffers. Instead of the

150ms buffers the size was increased to a very large 4 second buffers. This value was

decided by looking at the peak bit rate of the video which never exceeds around 500

Kbytes over 3 seconds. Ideally, using a buffer this big should mean that all of the video

frames will get to the client eventually and before their playing time. The results of this

test is that no frames are missing during the 10 minutes. Of course 4 seconds of buffering

is unrealistically large in a real time situation such as the amount of time that would be

necessary for changing the channel in a TV application. But it does show that if the

average throughput is lower then the maximum throughput, the peaks of the traffic could

always be evened out with a large enough buffer.

 131

Missing Video Frames

0

5

10

15

20

25
1 38 75 11
2

14
9

18
6

22
3

26
0

29
7

33
4

37
1

40
8

44
5

48
2

51
9

55
6

59
3

Missing Video Frames

Figure 6-12 Missing video frames

6.7 Error Rate Contrast with 802.11b and 802.11g

The next scenario that is being tested is as follows. The media streaming is running

at 90% VBR quality over an 801.11b and 802.11g networks, that otherwise has no traffic

on them. The buffering on the client is configured to be at 2 frames including the internal

buffering that corresponds to around 150ms. This time is selected because a small

latency like this is useful in interactive applications or even mundane ones, such as

changing the channel on a TV. The client is configured to have various packet loss rates.

The question is, how does the increase in the simulated packet rate decrease the video

quality as measured by the number of video frames unavailable to be played?

 132

6.7.1 801.11b with 1% Packet Loss Rate.

Out of a total of 137,892 packets a total of 1,372 were dropped (which is around

1%). The distribution is shown in Figure 6-13 which verifies that the drops are indeed

random. The number of video frames missing is not random though. There are two

peaks at 182 and 302 seconds, which correspond to the peaks in traffic as shown by the

previous Figure 6-10.

Total Simulated drops per second

0

1

2

3
4

5

6

7

8

1 52 10
3

15
4

20
5

25
6

30
7

35
8

40
9

46
0

51
1

56
2

Total Simulated drops
per second

Figure 6-13 Total simulated drops per second (11 Mbps 1%)

 133

Total Video Frames missing

0

1

2

3
4

5

6

7

8

1 49 97 14
5

19
3

24
1

28
9

33
7

38
5

43
3

48
1

52
9

57
7

Total Video Frames
missing

Figure 6-14 Total video frames missing (11 Mbps 1%)

6.7.2 802.11 with 5% Packet Loss Rate

The 5% packet loss rate test is far more interesting. At this higher rate, far more

video frames were missing under the normal traffic load. But something else happened.

In the two peaks (182 and 302 seconds), there was not enough bandwidth for both the

video stream and the resend requests. When this happened so much bandwidth is taken

up by the resend requests, that not enough is available for the transmission of traffic, that

would normally be sent correctly (i.e. not dropped by the simulated packet drop). This is

shown in Figure 6-15 where there is a small frame missing rate normally but that value

sky rockets during the two peaks. With so many frames missing during the two peaks,

the video becomes unwatchable and mostly just freezes. In addition, due to the loss of

available throughput, the audio packets, which are not subject to simulated drops start to

be missing. This is shown in Figure 6-16.

 134

Total Video Frames missing

0

5

10

15

20

25

30

35

40

1 50 99 14
8

19
7

24
6

29
5

34
4

39
3

44
2

49
1

54
0

58
9

Total Video Frames
missing

Figure 6-15 Total video frames missing (11 Mbps 5%)

Total Audio Frames missing

0

5

10

15

20

25

30

35

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

50
1

55
1

Total Audio Frames
missing

Figure 6-16 Total audio frames missing (11 Mbps 5%)

 135

6.7.3 802.11g with Varied Packet Drop Rate

The same experiments are now run with the 802.11g network. This network proves

to be much more resilient than the 802.11b network. Because of this, additional tests are

run while increasing the packet drop rate to 20%.

Total Video Frames missing

0

0.5

1

1.5

2

2.5

3

3.5

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

50
1

55
1

Total Video Frames
missing

Figure 6-17 Total video frames missing (54 Mbps 1%)

Total Video Frames missing

0
1
2
3
4
5
6
7
8
9

1 49 97 14
5

19
3

24
1

28
9

33
7

38
5

43
3

48
1

52
9

57
7

Total Video Frames
missing

Figure 6-18 Total video frames missing (54 Mbps, 5%)

 136

Far fewer frames are dropped in Figure 6-17 and there does not appear to be a

correlation with increasing amounts of traffic. In Figure 6-8, when the packet drop rate is

5%, there is a slightly higher correlation with the traffic, as seen by two peaks. Further

test were run at 10% and 20%, with 20% being the more interesting as shown in Table 6-

4. Figure 6-19 again shows the traffic at 90% VBR for 10 minutes. Figure 6-20 shows

the simulated packet drops over time and Figure 6-21 shows the frames missing over

time. These graphs look similar except for the scale. With such a high loss rate at 20%,

the density of the random drops is enough to for the missing frame rate in a given second

to directly correspond to the number of bytes sent that second. Note that very few, if any,

audio frames were ever dropped, so any missing frames is entirely due to dropping the

same packet twice thereby making it unavailable when it is required.

 (54 Mbps 1%) (54 Mbps 5%) (54 Mbps 10%) (54 Mbps 20%)

Total Video Traffic 180122982 183884042 186920318 186512921

Resend Traffic 1772250 9565591 21156994 44616837

Percentage .984% 5.2% 11.3% 24%

Total missing frames 9 172 988 3954

Table 6-4 Loss rate VS Missing frames

Table 6-4, shows the number of bytes used to resend the packets given a simulated

drop rate. Note, as the drop rate becomes higher, a larger difference occurs in comparing

the simulated drop rate with the quantity of bytes used to resend packets. This further

confirms that the higher the percentage of dropped packets, the greater the likelihood of

the same packets being dropped more than once, and being attempted to be resent more

than once.

 137

Total Client Bytes per second

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1 58 11
5

17
2

22
9

28
6

34
3

40
0

45
7

51
4

57
1

Total Client Bytes per
second

Figure 6-19 Total Client Bytes per second (54 Mbps 20%)

Total Simulated drops per second

0

20

40

60

80

100

120

140

160

1 54 10
7

16
0

21
3

26
6

31
9

37
2

42
5

47
8

53
1

58
4

Total Simulated drops
per second

Figure 6-20 Total Simulated drops per second (54 Mbps, 20%)

Total Video Frames missing

0

5

10

15

20

25

30

1 50 99 14
8

19
7

24
6

29
5

34
4

39
3

44
2

49
1

54
0

58
9

Total Video Frames
missing

Figure 6-21 Total video frames missing (54 Mbps, 20%)

 138

6.7.4 Simulated Packet Drop Conclusions

The two different networks, 802.11b and 802.11g, show two different results in

terms of packet loss. The 802.11b network is more bandwidth limited so the testing

readily shows the effects of packet loss when the throughput limit is being reached.

When this happens, there is a cascade failure. The resend request mechanism is doing

more damage than good because it increases the used available throughput considerably.

802.11g has a large excess of throughput when only the one media signal is being

transmitted. Therefore, it does not show this cascade effect because the throughput limit

is never reached. Because the missing frame rate was low, it was possible to increase the

simulated drop rate to see its effects. As the simulated drop rate increases, both the

dropped packet and missing frame rates pretty much approach the level of the traffic.

This makes sense, as the larger the traffic, the greater the quantity of packets being

generated, therefore, the greater the quantity of packets being dropped. Any frames that

are missing are entirely due to the fact that the resend attempts of a given packet are

dropped, and not because of any throughput problems.

 139

Chapter 7 Conclusions

7.1 Summary

This thesis provides a thorough background and in depth description of wireless

media streaming. This section highlights some of the more interesting points from

different sections of this thesis.

The component based architecture used in the wireless simulator proved very useful.

It decreased the overall time required to develop the simulator, particularly in terms of

less time spent debugging. This architecture also allowed for the easy expansion of the

simulator to use multiple channels. The architecture made it possible to integrate an API.

To program the simulation only requires expanding a single inherited class without

requiring any knowledge of how the rest of the simulator works. The simulator API is

simple and resembles popular OS such as Windows or Linux.

The experimentation using the wireless simulator showed several things. The first is

that fundamentally, wireless in an application programmer’s perspective can be modeled

very similarly to wired networks with higher latencies and lower throughput. Even with

a higher BER, the RTS-CTS-Data-ACK mechanism guarantees that the data is eventually

sent. Adding an access point decreases the throughput by half, and increases the latencies

by more than two, but does not add any caching effects. When streaming video, it is

important that when frames are fragmented into packets that they are all sent. If there is

not enough capacity, whole frames should be dropped by the server, until it is guaranteed

that the entire frame consisting of several packets can be sent. When using multiple

channels, it is observed that it effectively increases the throughput accordingly with some

 140

care being needed with the channel selection algorithm. If some other knowledge such

as channel BER is available, that would likely be useful to incorporate in the algorithm.

The chapter on DirectShow filters is useful for anyone who wants to learn the basics

involved in writing a filter. The chapter is a condensed version of what is available in the

DirectX SDK. A good way to learn how to write a filter is to read the chapter and then

try to get a memory copy filter working.

The discussion of how the media streaming software is developed should also prove

useful in developing one’s own software. Even if one does not use DirectShow, the

architecture discussion should be useful. In particular, the transport component

architecture is designed well. On numerous occasions during the development, different

items were added to the packet headers in the header class, without having to make any

changes anywhere else. It is also possible to reuse the code for different applications.

The description of the resend request mechanism description and synchronization

mechanisms should prove useful. Although the need for these mechanism are discussed

in [Perk03], their implementation is not.

Testing the wireless networks showed that for 802.11b it is possible to achieve

around 1 MBytes per second in terms of throughput. For 802.11g it is possible to achieve

around 4 MBytes per second. In both cases, until the throughput of the channel is used

up, all of the data is sent reliably.

The media streaming experimentation chapter has some interesting points. The first

is a graph of the VBR bit rate stream over time. The peak rates of VBR make it

unsuitable if the channel requires guaranteed bit rates. However, the bit rate leads to

some interesting experimentation.

 141

When there is not enough throughput available for all of the traffic, and the

buffering of the media stream is low, frames will be lost. However, if the buffer is set

large enough to compensate for the peak bit rates, it is possible not to lose any frames.

Generally speaking, after observing many hours of video, it is far preferable to view

video at a decreased bit rate rather than lose video frames. This is corroborated by

[LMZ02]. The process of lowering the bit rate is nearly seamless. However, the far

more interesting issue of knowing when to do this automatically is not explored in this

thesis.

The packet loss tests are interesting too. They show that, for the most part, the

packet resend mechanism works. One unexpected result was that when the resend

request took up enough throughput, it caused the media streams to fail for a few seconds.

This is very noticeable visually. Also it is shown that as the packet drop rate increases,

the number of missing frames increases at a greater than linear rate. This can be

explained because when the first packet drop will not cause the frame to be missing, but

the second one will.

7.2 Recommendations for Future Work

1. Resend request mechanism: Having a smarter resend request mechanism

could be useful. Measuring the exact time it would take to respond to a resend

request could be useful. Also is could be useful to avoid the cascade failure

when the resend request takes up enough bandwidth to cause a few seconds of

media to be missing.

 142

2. Fully componentize the wireless simulator: The core of the wireless

simulator can be made into Dynamic Link Libraries and made into more of an

SDK format where it would be very easy to distribute to other people.

3. Adding routing to the wireless simulator: The wireless simulator has the

capacity to simulate the Internet. Since it relies on packets it is relatively easy

to add Internet routing to the simulation.

4. Investigate throughput issues on a home network: Generally speaking, if there

is insufficient throughput, the streaming just will not work. Since streaming is

in real time and probably a higher priority then other home networking traffic,

it might be prioritized at the MAC level. Experimentation can be done by

using the simulator to investigate the new 802.11e standard, which includes

different priorities of packets, each priority class having its own queue and

back off timer. The simulator has the capacity to be easily expanded to

having multiple queues and back off timers on a single network device.

 143

References

[AhDa96] J. Ahn and P. B. Danzig, Speedup vs. simulation granularity IEEE/ACM
Transactions on Networking, vol. 4, no. 5, pp. 743--757, Oct. 1996.

[Athe03a] 802.11 Wireless LAN Performance. 2003 Atheros Communications, Inc.

[Athe03b] Methodology for Testing Wireless LAN Performance with Chariot. 2003
Atheros Communications, Inc.

[Bren97] P. Brenner. A Technical Tutorial on the IEEE 802.11 Protocol. Breezecom
Wireless communications 1997

[COM05] Component Object Model http://www.microsoft.com/com/default.mspx

[FPJF03] G. Flores-Lucio, M. Paredes-Ferrare, E. Jammeh, M. Fleury, and M. Reed.
OPNET-Modeler and NS-2: Comparing the Accuracy of Network Simulators for Packet-
Level Analysis using a Network Testbed. 3rd WEAS Int. Conf. on Simulation, Modelling
and Optimization (ICOSMO 2003), Crete, vol. 2, pp. 700-707, 2003

[HBEI01] J. Heidemann, N. Bulusu, J. Elson, C. Intanagonwiwat, K. chan Lan, Y. Xu,
W. Ye, D. Estrin, and R. Govindan. Effects of detail in wireless network simulation. In
Proceedings of the SCS Multiconference on Distributed Simulation, pages 3-11, January
2001.

[HuKH04] A. Hussain, A. Kapoor and J. Heidemann, The Effect of Detail on Ethernet
Simulation, PADS-04, Kufstein, Austria, 16-19 May 2004.

[IEEE99] ANSI/IEEE Std 802.11 Wireless LAN Medium Access Control (MAC) and
Physical Layer Specification, IEEE 1999.

[JaEl98] S. Jacobs and A. Eleftheriadis. Streaming Video using Dynamic Rate Shaping
and TCP Congestion Control. Journal of Visual Communication and Image
Representation, Special Issue on Image Technology for WWW Applications, 211-222,
September 1998.

[JSIM04] J-Sim network simulation tool. www.j-sim.org

[LAME05] Lame MP3 encoder http://lame.sourceforge.net/

[LiZa04] H. Liu and M. El Zarki. On the adaptive delay and synchronization control for
video conferencing over the Internet. ICN'04, France

[LMMZ02] Xiaoxiang Lu, Ramon Orlando Morando, Magda El Zarki, “Understanding Video
Quality and its
use in Feedback Control,” Packet Video 2002, Pittsburgh, PA, USA 2002

 144

http://www.j-sim.org/

145

[Micr02] DirectX 9.0 SDK 2002 Microsoft Corporation.

[Micr04] Microsoft Research Conference XP http://www.conferencexp.com

[Micr05] Microsoft Media Home
http://www.microsoft.com/windows/windowsmedia/default.aspx

[Nede01] P. Nedeltchew. Wireless Local Area Networks and the 802.11 Standard. March
31 2001.

[Nico02] D. Nicol, Comparison of Network Simulators Revisited, Dartmouth College
May 20,2002

[NS204] NS2 network simulation tool. http://www.isi.edu/nsnam/ns

[PeHH98] C. Perkins, O. Hodson, V. Hardman. A Survey of Packet-Loss Recovery
Techniques for Streaming Audio. IEEE Network, pp.40, September 1998.

[Perk03] C. Perkins. RTP Audio and Video for the Internet. Addison-Wesley 2003, 414
pages

[Pesc03] M. D. Pesce, Programming Microsoft Directshow for Digital video and
Television. Microsoft Press 2003, 413 pages

[Tall98] Talluri, Raj, “Error-Resilient Video Coding in the ISO MPEG-4 Standard,” IEEE
Communication Magazine, June 1998.

[Tyan02] H. Tyan. Design Realization and Evluation of a Component-Based
Compositional Software architecture for Network Simulation. A Doctorate Thesis, Ohio
State University 2002.

[ViLa04] Video Lan, Multioperating system video streaming software.
http://www.videolan.org/

http://www.conferencexp.com/
http://www.isi.edu/nsnam/ns

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Problem Context
	Scope
	Outline

	Wireless Simulation Background
	CSMA-CD
	CSMA-CA
	Software Architecture
	Physical Layer
	NIC Layer
	OS Layer
	Process Layer
	Network Layer
	Storing Statistics

	Application Programming Inteface
	Process Overrides
	Event Overrides
	Utility Function Calls
	DNS services
	Timers
	Socket Functionality
	Network Setup Functions

	Wireless Simulation Experimentation
	Verification of the simulator
	Bit Rate Test
	Data Integrity Test

	Simulator Experimentation
	Effects of an Access Point
	Wireless Simulation of 802.11 Media Streaming
	Multiple Channel Experimentation
	Experimentation Conclusion

	DirectShow Filters
	Why Use DirectShow
	Introduction to COM
	What is a DirectShow Filter
	Graph Edit
	Filter Programming Example
	Using the DirectShow SDK
	The Memory Copy Filter
	Basic Configuration
	The Main Filter Class
	Input/Output Pins
	Summary of Creating a Filter

	Media Streaming Architecture
	The Transport Layer
	Software Architecture of the Transport Layer
	Header Format
	The Packetization Process
	Outgoing Buffer
	The Incoming Buffer

	Server Architecture
	The Main Window Class.
	The DirectShow Filters
	The DirectShow Manager
	The Connection Manager
	Outgoing Buffers
	GUI, Console and Statistics

	Client Architecture
	The Main Window Class/Connection Manager.
	The DirectShow Filters
	Media Synchronization
	The Network Receiver
	The Audio Filter

	GUI and Statistics

	Wireless Video Streaming Experiments
	The Network Test Utility
	Basic Network Testing
	Ping Test
	Bandwidth Test

	Media Application Installation Instructions.
	Server Installation Instructions
	Client Installation Instructions

	Server and Client statistics
	Server Statistics
	Client Statistics

	Basic Video Streaming Properties
	Bandwidth Stress Test.
	Error Rate Contrast with 802.11b and 802.11g
	801.11b with 1% Packet Loss Rate.
	802.11 with 5% Packet Loss Rate
	802.11g with Varied Packet Drop Rate
	Simulated Packet Drop Conclusions

	Conclusions
	Summary
	Recommendations for Future Work

	References

