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Abstract

A current research question in robotics is how to map an area without accurate odometry in real
time. This thesis looks into this question first from a system perspective, and then focuses on
developing a real time simultaneous localization and mapping (SLAM) algorithm.

This thesis follows a previously successful project in developing a robot to map an indoor
environment, and uses the previous project's design process as a template. Like the previous project,
each part works individually but this time the parts do not work together. This is a textbook example of
the “second system effect” described in software engineering literature. Following the attempt at
developing a complete mapping system, the thesis is refocused on designing a SLAM algorithm.
Planes are chosen to be the input to the SLAM problem and they are generated from 3D point clouds
using the expectation maximization (EM) algorithm. After several failed attempts at creating an
algorithm, the knowledge gained in those attempts led to the Relative Plane algorithm and then the
Relative Point algorithm.

There are many different algorithms that have been shown to solve the SLAM problem depending
on the type of input data. Many of these algorithms use some form of cumulative current position as a
state variable and only store landmarks in their globally mapped form, discarding past data. This thesis
takes a different approach in not using current position as a cumulative state variable and storing and
using past data. Landmarks are mapped relative to each other in their untransformed states and use
either three points or one plane to maintain translation and rotation invariance. The Relative
algorithms can use both current and past data for accuracy purposes. Using this approach, the SLAM
problem is solved by data structures and algorithms rather than probabilistic modeling.

The Relative algorithms are shown to be good solutions to the simulated SLAM problems tested
in this thesis. In particular the Relative Point algorithm is shown to have a worst case computation
complexity of O(nslogn;). nyis the average quantity of points observed in a given observation and is not
related to the total quantity of points on the map. The Relative Point algorithm is able to identify
points with movement that is not correlated to the viewpoint at a low cost, and has comparable

accuracy to a 6D no odometry Extended Kalman Filter.
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Glossary
SLAM Simultaneous localization and mapping
EM Expectation maximization
ICP Iterative Closest Point
EKF Extended Kalman Filter
BSP Binary space partitions
API Application Programming Interface
PVS Potential Visible Set
CGS constructive solid geometry
SVD singular value decomposition
MFC Microsoft Foundation Class.

O(n?), O(nlogn), O(n), Big-O notation. Describes the relationship of the number of computations
required versus the number of elements n to compute. For real time computation, generally the
computation complexity cannot be worse than O(nlogn).

RltPlane a name given to the data structure (class) which stores untransformed planes. The key
functionality is to match incoming planes to the last plane in storage and the quick retrieval of

untransformed planes given an iteration for the RItXPoint.

RItXPoint a name given to the data structure (class) which stores links to RItPlanes and calculates their
relative offsets from each other. The RItXPoints are linked to other RLXPoints with linking planes and

starting at the first observed one they can be used to calculate the map.
Key points. The key point is the corner point which is static in a given interval.

Motion model. When only one partial plane is visible it is not possible to locate the robot with a full
range of movements. So it is assumed that the robot uses a restricted motion model (no side to side

movement) and doing this allows for the algorithm to continue to operate.
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Chapter1 Introduction

1.1 Problem definition

One of the goals in robotics research is for a robot to be able to map an area without being given
accurate position data. This is generally referred to as the simultaneous localization and mapping
(SLAM) problem. The problem can be stated as: how does one place objects on a map if the current
position is unknown or inaccurate, and how does one know the exact current position if there is not
map to reference?

There are many different solutions to the SLAM problem. This thesis looks at the problem from
the perspective that the only inputs are points in 3D that can be generated by computer vision
algorithms and there is no odometry data. The points can either be used an the input to the SLAM
algorithm or they can first be transformed into planes which are then used as the input. This thesis
takes a representational approach of solving SLAM using algorithms and data structures rather than
relying on one of the known techniques.

Most SLAM algorithms typically perform only one task. Given landmark data they are able to
filter noise to place the landmarks correctly on a map. Depending on the environment, an additional
challenge can be present in identifying non static features. With planes, the edges of a plane are
dynamic, growing or shrinking as the plane appears or leaves the viewpoint. With points it is possible
that several of the point's movements are dynamic and not correlated with the movement of the
viewpoint. This dual problem of both noise in the environment and dynamic changes to the landmarks
is more difficult than solving either of these problems if they occur separately. The challenge increases
further if the requirement is that the SLAM algorithm is to run at real time computational speed. The
algorithms developed in this thesis, the Relative Plane algorithm and the Relative Point algorithm are

able to solve these dual problem in real time.



1.2 Methodology

The original goal of the thesis was to construct a complete system for autonomous mapping. That
is, build the robot hardware, run the Al software on it and have a map being made in real time. This
consisted of designing the electronics for the robot, a FPGA design to do the low level vision
processing, and a simulator to program the Al software. Individually each component worked but it
was not possible to combine them to form a working system.

A previously successful robot project that had the robot achieve its goals, was used as a template
for this project. Its scaled up design process was unsuccessful in meeting the goals of this thesis's more
difficult problem. This phenomena is known as the “the second system effect” described in software
engineering literature [Broo95]. Even though the design was not successful the process is quite
interesting so it is described in this thesis.

After reevaluating this project it was decided to focus on the map building problem. There are
many different algorithms that have been shown to solve the SLAM problem, depending on the type of
input data. Many of these algorithms use some form of cumulative current position as a state variable
and only store landmarks in their globally mapped form, discarding past data. This thesis takes a
different approach in not using the current position as a cumulative state variable and storing and using
all or as much possible past data. Landmarks are mapped relative to each other and the Relative
algorithms can use both current and past data for accuracy purposes. Using this approach, the SLAM
problem is solved by data structures and algorithms rather than probabilistic modeling.

It is interesting to see the path that led to the derivation of the Relative algorithms. The basic idea
of being able to use both current and past data is established early but the relative aspect is not. The
first attempt uses something similar to the Iterative Closest Point algorithm after the points have been
converted to planes. This algorithm did not work but it was shown that if the current position estimate
is accurate, a good map can be created. This led to several more attempts where the focus was to
maintain an accurate position. These attempts worked when the plane size is static but in reality a
plane grows and shrinks as the plane is first seen and later passed by. Approach after approach failed as
they were attempting to treat this growing and shrinking problem as noise, which they were never able
to filter out. Each attempt proved to be a learning experience on the limits of different types of
algorithms and more importantly of the problem itself. It is in the refinement of the knowledge of the

problem that leads to the Relative Plane algorithm. Subsequently, the Relative Point algorithm is



developed that uses points as input and has the capability of identifying dynamic point movement. It is
noted that individual parts of these algorithm have been seen before, but the algorithms in their entirety
are new.

Both versions of the Relative algorithms use the principle of storing untransformed observations,
as seen by the robot's viewpoint. The processing is performed exclusively on the untransformed
observations rather than transform them into global space. New observations are matched to past
untransformed ones and placed into efficient data structures. A single instance of the data structure
contains many observations of the same landmark. The landmark represented by all of its
untransformed observations is grouped together with other landmarks that are seen on the same
observation interval. A relative map of a group can be calculated using the average of the relative
locations of the untransformed observations, computed over the observation interval. Before
computing the average, it is first required to make the comparison both translation and rotation
invariant. In the planar version this is done by making one plane the basis of the average comparison.
In the point version this is done by making three points the basis of the average comparison. After a
group's relative map is created, a global map can be made by combining many group's relative maps
using landmarks that are present in both. Current position can be calculated by comparing the
difference of the current untransformed observation location's versus their global position's. Current

position is used in a local sense when backtracking and only used globally when closing the loop.

The Relative Plane algorithm is unique in the way it is able to identify which edge of a plane is
valid, and its use of a motion model when only one partial plane is visible. It is difficult to directly
compare it against other algorithms due to its capabilities. This is why the formal evaluation is done

using the Relative Point algorithm.

The Relative Point algorithm uses the more common 3D points as the input. There is a direct
comparison to a 6D no odometry version of the Extended Kalman Filter (EKF). The comparison is not
to rank which algorithm is better. Rather, the EKF results are used as a baseline to prove that the
Relative Point algorithm has comparable accuracy given the same data. Further testing is done to
evaluate the error of the Relative Point algorithm as a simulated robot travels the same path many

times.

The Relative Point algorithm is thoroughly evaluated to show that its computation complexity is

proportional to O(n,logns) where n, is the average quantity of landmarks seen in a given observation.



It is also shown that it is effective in removing dynamic landmarks with a low cost in terms of the
average computation time of the algorithm. In fact it can be argued that the Relative Point algorithm
approaches the minimum computation possible, given that each observed landmark must be registered

every iteration.

It is not the intent to rank the Relative algorithm versus others. It is too earlier to exactly quantify
how the Relative algorithms directly compares to others especially in accuracy. There is a potential
unknown effect on accuracy due to the discretization of only comparing landmarks present in the same
groups. This is why much of the evaluation attempts to identify possible sources of landmark error.
Rather than rank the Relative algorithm versus others, it can be said that given a problem similar to the

ones simulated in this thesis, the Relative algorithm can be an effective solution to the SLAM problem.



1.3 Outline

There are three distinct sections in this thesis: Chapter 2 and Chapter 3 are background chapters,
Chapter 4 and Chapter 5 are on the Relative Plane Algorithm, and Chapter 6 is on the Relative Point
Algorithm.

The figures in this thesis are best viewed in color. A pdf of this thesis is available online.

Chapter 2: The second system effect discusses the initial system designed to build a robot. 2.2
talks about a previous project and 2.3 uses the past design process on this thesis goals. 2.3.4 discusses

the second system effect and 2.4 describes the next design process which is successful.

Chapter 3: The search for the Algorithm describes the implementation and results from several
well known algorithms: Iterative Closest Point (ICP), Extended Kalman Filter (EKF) and Expectation
Maximization (EM). 3.6 describes several attempts at a SLAM algorithm by trying to get the current

position as accurate as possible and treating a plane's growing and shrinking as noise.

Chapter 4: The Relative Plane Algorithm introduces the new Relative Plane algorithm by going
through the process step by step used to develop and implement it. The algorithm is stated as a
collection of rules that are found in implementing the underlying concept of grouping planes. 4.2
introduces the basic concept of the algorithm and 4.3 discusses how the algorithm is derived. 4.4
discusses software architecture of the algorithm, which is important since having a good architecture
made it possible for the algorithm to be built from a basic concept to a full algorithm. 4.5 goes through
one full iteration of the algorithm corresponding the the input of the algorithm to the software
architecture and stating where each rule is used. 4.6 has closing remarks of the algorithm including

noting some related work in 4.6.2.

Chapter 5: EM in combination with the Relative Plane Algorithm shows the results of the
algorithm as it is integrated into a simulation that starts with points, forming them into planes using the

EM algorithm and then runs the Relative Point algorithm.

Chapter 6: The Relative Point Algorithm adapts the Relative Plane algorithm to using points as its
input. 6.1 through 6.5 describe the algorithm. 6.6 examines the performance of the Relative Point
algorithm in terms of landmark error and computational complexity. 6.7 compares the accuracy of the

Relative Point algorithm to a 6D no odometry version of the EKF. 6.9 takes one further look of the



accuracy of the Relative Point algorithm by examining the landmark and position error as the simulated
robot loops the same area many times. 6.10 compares the two Relative algorithms, noting that the

Relative Point algorithm implements much of the future work of the Relative Plane algorithm.

Chapter 7: Conclusion is the summary of the thesis.



Chapter 2 The second system effect

2.1 Introduction

Sometimes decisions of the past that were correct at the time are reused for future projects to
unfortunately poor results. Sometimes following a straight forward path to achieve goals does not
work and a new direction has to be chosen. This chapter examines some successful past work of the
author that caused some misdirection for the Ph. D. work in terms of the “second system effect” as
described by [Broo95].

Why is this chapter part of this thesis? One of the goals of this thesis is to provide information for
anyone that wants to work on robotic projects, whether it is building the physical robot, designing a
simulation or working on the artificial intelligence (Al) algorithms. Much can be learned by seeing

what went right and what went wrong as described by this chapter.

The first section of this chapter is on the author's undergraduate thesis [Krau02]. The thesis
consists of the construction of a robot from a radio controlled car chassis, implementation of a 2D map
editor and simulator, and development of a wall following Al. The thesis is successful as it met its
goals. It showed that it is valid to develop the Al on a simulator first and then port the code over to the

robot that has the same application programming interface (API).

Following the success of the undergraduate thesis, a very similar process is used to develop a
second robot. As with the “second system effect” many parts of the previous work are improved upon.
This time the robot is designed all at once rather than built incrementally, and all the boards are
manufactured together. A new 3D map editor and simulator are created to simulate an area for 3D
vision Al algorithms. Although the second robot project has parts that work individually, together they

do not achieve the project's goals.

The third project is a scaled down version of the second. Some code is reused and there is a much
better focus on the actual project goals. The simulation tools of the third project are used for the

Relative Plane algorithm developed in this thesis.



2.2 First Robot Project

When developing the hardware for the undergraduate robot thesis, it is realized that it would be
easier to program the Al in a simulator, and then port the code to the actual robot. To compile and load
the firmware, then setup a robot can take minutes whereas programming in a simulator can take
seconds. Also depending on how good the wireless communication is, it can be difficult to debug an
algorithm when the robot is running. First a map editor is created and then it is expanded into a

simulator.

2.2.1 Map Editor

The map editor has similar functionality to a two dimensional CAD program. The base object is a

line and it supports arcs which are composed of lines. It features.
* create line, arc, snap to end point, grid, zoom in/out.
* group/ungroup undo/redo, save/load print, cut/copy/paste
» for the robot, add bump sensor, ir sensor, sonar sensor, robot starting position
* add depth to line segments mostly for 3D rendering.

¢ QGUI and console base user interface.
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Figure 1 Map created in the map editor

Figure 1 shows the map editor with the map that is used for the simulation. The software

architecture is very basic with only a few classes.

* CchildView: a class created by the MFC wizard. It does the initial handling of user events.

* Uconsole: in addition to be able to add input using the mouse, it is possible to use text input
with the console. This class parses the user input and performs the action. When the user uses

the GUI to do an action, the corresponding command is displayed in the console.

e Udraw: this class is a an interface. When the user clicks on a button to draw a line, that event
gets routed to this class. It has some variables for state, event handling, and translating screen

to logical coordinates.

* UlinearAlgebra: the linear algebra library contains 2D math such as compute the intersection of

two lines.

* UquadTree: not only is this class a quad tree which implies it is used to store objects on the map

for efficient selection and rendering, it also contains all the information and operations for the



objects themselves! Everything to do with creating an object, moving it, saving it, copy/paste,
snap to point, and rendering is performed here. The class is very large as it had the majority of
lines of code for the project. One potential improvement to the map editor is that the

architecture be redesigned so most of the functionality does not end up in one class.
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Figure 2 Close up of the map used for the simulation
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Figure 8 Sonar beam in the simulation



Figure 2, Figure 3, Figure 4, Figure 5, Figure 7, Figure 8, and Figure 6, show some of the various uses
of the map editor. In addition to making maps, it can be used to make the shape of the sonar beam and

to make the bounds of the robot and place sensors inside of it.

2.2.2 Simulator

The simulator is based on the code from the map editor. Its main class is still the UQuadTree and
contains a class for each sensor, SbumpSensor, SIRSensor, SShaftEncoder, SsonarSensor, etc. Most of
them are fairly simple but the sonar is more complex as it shoots out line segments to see if there is any

contact. It also has a angular firing sequence.

The simulator is in 2D, however it is possible to render in both 2D and 3D. As it turned out 3D is

quicker, as the graphics card can rendering polygons quicker than the Windows API can render lines.
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Figure 9 Showing the simulation in 2D mode
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Figure 10 Full simulation, right most window shows the map the Al is generating
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Figure 11 Sonar in a hallway Figure 12 Sonar in a room

Figure 13 Total map

Figure 14 Sonar in a hallway
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Figure 15 IR closeup Figure 16 IR closeup

Figure 9 shows the simulation in two dimension (2D) mode and Figure 10 shows the simulation in
three dimension (3D) mode. It is possible to swap modes instantly. In those two figures, the upper
right portion of the window shows the map being made and it is possible to select nodes in the map for
navigation. Figure 11, Figure 12, Figure 13, Figure 14, and Figure 15 show various screen shots of the

simulation.

The first simulation worked really well. It simulates the robot accurately enough so that the Al
code works in a live setting. One of the key features is that the simulator has the same API as is used in
the robot's embedded system. This allowed the Al code to be ported within minutes. The Al code is

fairly large and would have been very difficult to debug in a live setting.
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2.2.3 Robot

The first robot is based on the rug warrior seen in Figure 18. It is powered by a 68HC11
processor and a custom PCB and chassis. The stock version has a limited amount of sensors. It comes
with a dual IR emitter, a single IR detector, shaft encoders for the wheels and three bump switches.
Figure 17 Shows the iRobot B21 which comes with 48 sonar sensors 24 IR sensors, 56 touch sensors
and far better shaft encoders. The goal is to build a robot better than the rug warrior and to try

approach the capability of the iRobot B21.

Figure 18 Rug Warrior picture from
Figure 17 iRobot B21

The solution is to use a Radio Shack bedlam RC chassis seen in Figure 19, a more powerful micro
controller, the Siemens 167, some custom electronics seen in Figure 20, a sonar that could rotate, five

IR sensors, an optical mouse, and 8 bump sensors.

Figure 19 Bedlam chassis Figure 20 The custom electronics
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After gutting the Bedlam chassis, the first step is to put in the custom motor board, the custom
power board, and the optical mouse seen in Figure 21 Base assembly. The next step is to put in the
LCD, the micro controller board and then IR sensors seen in Figure 22. Each sensor requires the
addition of interfacing electronics. In between the micro controller board and the IR sensors is the

LCD controller board and the optical mouse interface board.

Figure 21 Base assembly Figure 22 With IR assembly

The sonar and sonar interface boards are placed on top of the IR sensors. The sonar's electronics
Figure 23 has four boards: the sonar kit board, the stepper driver board, a board which has chips to
interface with the kit and an IR emitter detector to zero the stepper motor, and a board to change the
routing of the wiring. There are also electronics hidden inside the robot such as the shaft encoder
electronics and some circuitry for the batteries and a power switch. At this point the robot is getting

quite tall and congested.
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Figure 24 First robot

The end result in Figure 24 may not look pretty but the robot worked. Much space is wasted due
to wiring and electronics which could be on the same board but are not. If the robot is designed all at

once the design might be more compact and efficient.
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2.2.4 Robot Al

The robot is limited by the 80 cm infrared detector range and the time it takes for one long range
sonar sweep. The sonar sweep is too slow for continuous movement since there is only one sonar that
is rotated and it takes over 1 second for a full scan. This led to the choice of using wall following as

the means to localize the robot.

When map making, the robot follows the wall within the infrared detector range and looks for any
discontinuities. If it finds one it charts it on the map. If it finds an empty space the robot is instructed
to stop and perform a full sonar sweep. The sonar routine is calibrated to know if it is detecting a room
or an open hallway. If the opening is a room, it goes past the room and keeps on following the wall. If
the opening is a hallway the robot always turns right. Always turning right allows the loop to be closed
using the shortest distance. After closing the loop, the robot would then go to new area to generate a

map.

A generated topological map is shown in Figure 25. Circles with arrows represent discontinuities.
The arrows direction shows if the detection is closer or further away than the previous wall. The size
of the arrows indicate the length difference. Squares with a circle indicate locations where a sonar
sweep is taken and squares with a triangle indicate a room. The landmarks are placed on the map using
distance given by the shaft encoders which is very accurate going straight. The shaft encoders are
unreliable during turns due to the slippage caused by the tracks having to be nearly at full power in
order to turn. This necessitates the need to assume all turns are 90* After a turn the robot is nearly

never 90° from the previous location so it needs to reorient using the next wall.
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Figure 25: Topological map

When navigating, the user selects the current node and the destination node and then instructs the
robot to go on that path. The robot uses a shortest path algorithm to find the route. Each landmark on
the route is stored on the stack. When the robot detects a wall discontinuity, it references the stack to
see if it has arrived at the next landmark. If it does not match, the stack is searched for a matching
landmark. If a matching one is found that become the current position. This can happen because
sometime a landmark can be close to the size threshold and not appear every time. Locations in
between landmarks are charted uses the shaft encoder distance. When the stack is empty, the current
node is the goal node and the navigation is complete. Navigating is quicker than map making since

when navigating the sonar is not required.
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2.2.5 Results

Overall, the project was a success. First the Al is tested in the simulation map shown in Figure 1.

The result is shown in Figure 26. The Al is then ported to the robot in a few minutes.

_.:TJJII{I Ll 141 J.li‘.I.T‘J.'. LI I,II 1l 4
Ll. -I.l]ll.ll lI.J]-Jll-l--lﬂIJ. l]l .Jl !JL-I-

+

i T”f 1[1 ;14 11: Jil 121 DI SR DI ) P
Figure 26 Simulation results

The first experiment was to see if the robot could map a section shown in Figure 27 and the
results in Figure 28. The section in Figure 27 differs from Figure 26 due to some ongoing construction

in the office that doubled the size of one cubicle.
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Figure 27 Section to map Figure 28 Map results
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The results in Figure 28 are quite good. There were some erroneous readings on the map as can
be seen by comparing the landmarks (the lines with arrows and perpendicular lines), to the simulated
results in Figure 26. This is due to the IR sensors giving incorrect readings. The IR sensors were an
issue as the detection threshold was raised and black filing cabinets were covered up with white paper
as the IR sensors could not detect them. The robot was able to successfully create a map and close the
loop.

Next the navigation was tested, and the robot was able to go from one cubicle on the map to
another across the office. When map making, the robot was able to complete the map about half the
time. When navigating the robot was able to arrive at the destination nearly every time. When map
making the robot would have to take a sonar reading when encountering any opening and the
realignment to the wall would not always work, especially depending on the stagger of the cubicle
walls. When navigating the robot does not have to stop and take a sonar reading as it is able to
reference the map as to what the opening is. There is video of both the mapping and navigation.

The conclusion of this project was not only the success of the robot, but also the verification of
the usefulness of the simulation. After about a month of developing the Al, the complete process of
porting the Al, loading it into the robot, testing it, making a few changes to the sensors thresholds, and

then taking the video took less than one evening.
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2.3 Second Project

2.3.1 Map Editor

After the success of the first simulation there was a plan to create a second simulation. The

second simulation is planned to be in full 3D and to be used to simulate navigation using vision. It

took several research projects before the 3D simulation was created.
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Figure 29 shows a terrain editor that uses mathematical functions to create a height map for
terrain. The terrain editor is not reused, but the octree spatial subdivision structure and the roll out
controls are. Figure 30 contains the path following algorithm using the original simulator. That
algorithm is reused for the second simulation. Figure 31 contains a physics demonstration of polygon
to polygon collision detection and basic Newtonian physics to deal with the collision. Figure 32
contains the light maps that are used for the second simulation.

After a few projects it was decided to use binary space partitions (BSP) with light maps. BSP is a
way to partition space into leaves using a splitting plane. Figure 33 shows the process. With a BSP, it
is possible to do O(logn) collision detection and be able to draw a map without having to use a z buffer

as the planes would be correctly sorted back to front.

Rather than use the BSP itself to do the rendering, there is a more efficient way using the results
of the BSP. After the space is partitioned it is possible to generate a potential visible set (PVS). Given
a location, the PVS is used to create a list of polygons that are potentially visible. When rendering,
some addition frustum culling is performed to see if any of the PVS are visible and if so it renders

them. There is some overdraw, but it greatly reduces the amount of polygons that have to be rendered.

The interesting thing about a BSP is that to create an optimum tree would take a lot of processing,
as it is difficult to know what the best splitting plane is. BSP algorithms try to select a good splitting
plane but not necessarily the best one. As long as the tree is mostly balanced the BSP should be

efficient.
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Figure 33 Shows how a BSP is created, figure from wikipedia [ Wiki09a].
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To create a BSP, there is a rule that there cannot be any “holes” in the map otherwise it is not
possible to compile a map. To avoid this situation, constructive solid geometry (CSG) is used.
Anything that is going to be used for the BSP is created out of geometry with addition and subtraction
operations. To create a room, one large square may first be added to the map, then a slightly smaller

square inside of it is subtracted from the large square.

-

S

Figure 34 CSG demonstration, figure from wikipedia [Wiki09b]

Using the BSP as the basis of the map editor, a design process similar to the first project is
followed. First a map editor is created, and then a simulator is made out of it. The original plan is for
the map editor and simulator to use the same rendering technology as the current state of the art
computer games but increase the realism by using high resolution textures taken from the area being

simulated. The hope is that this would be photo realistic.

Figure 35 shows a room being created by cutting a large box with a slightly smaller one. Figure

36 shows that room after lighting is applied. Figure 37 shows multiple rooms and Figure 38 shows the

same rooms lighted.

26



M modelviewer EEX
File Edit Yiew Help
; o @
T~ S O WP BE >+ Od  WE RE
i
g = ~ y Object2d Obiectl
e
7 % OmniightType Enetaden
= = I~ AmbieniLighiType Dt g
- s Geen [0 ]+ Toggle Rendeiing
= O -
g = Red W Seid
M R anaf300.000]-<- I WieFrame
[ Atteruatio{T0000 |-+ I~ Trarsparent
i 4 I
RRI| H I™ Hidden
M n ¥ Back Face Culing
L j b .q
| me il U Scale
T Ay N
- “ Scale
: : | Objectame. Objecta ObjectType: Light Ot
v
B sz < v[rmse = 2525 = oo 1673, 5608, 25208 Rotation B % [iems < vfewr | z [agwie < S:J:(:“nr:arqe’mo?;cng %%?E‘Typ;m;isﬂp? 1 Period .
Bialestiialijeet Ol pebil Scale: 0,300, 0.300, 0300  AABBSize f Selected object Object! Scale: 1000, 1000, 1.000  AABBSize:
' ! W Period [0.000 |-
Figure 35 Creating a room out of a box Figure 36 Lighting the room
B modelviewer B modelviewer
Fle Edt View Help Fle Edt Vew Help
. = 92
FPRRT D OF W2 RE PR D O MR UE

Blxf =vp  =zf =

lApp Initialized Fine

Figure 37 Creating multiple rooms

27

e - | [

App Initialized Fine

Figure 38 Lighting multiple rooms




B RSimulator
File Edit Wiew Help

Robot Cam

ond B
ilization 0.040708
Primitive Count 3058

Ready ML

Figure 39 Using edge detection in the simulated environment
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The architecture of this map editor is a large improvement from the previous version. The first
map editor is loosely based on AutoCAD and this one is based on 3D studio max which has a plug in
architecture. This map editor does not have a plug in architecture but it has a similar design
philosophy. Each object has its own class inheriting from a base class. Each control has its own class
inheriting from a base class. The user interface is implemented to interface with the base classes, so all
the objects have access to create custom controls when they are selected. This makes it very simple to

add new objects and controls to the map editor.

2.3.2 Result

The second map editor is a large improvement over the first one. The simulation borrows much
of the code from the map editor and includes an addition of a robot and a path following algorithm.

Figure 39 shows the simulation with an edge detection algorithm.
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2.3.3 Second version of the robot

The plan was to design the second robot all at once rather than build it incrementally. All the
electronics are to be manufactured together as shown in Figure 42. The boards consisted of motor
drive electronics, a power supply board, a analog/digital interface board, and a speaker board. All of
the boards are more powerful and/or more feature laden than the first robot. The electronics contains
the same Siemens 167 board that is connected to a Via EPIA x86 1.3 GHz board. The Via board has a
wireless Ethernet connection instead of the slow serial modem of the previous robot. The Via board is
powerful enough to stream motion JPEG video from a web camera.

The robot is designed in Pro/E shown in Figure 40 and Figure 41, rather than being designed
incrementally as it is built. The plan is for the robot to work both for autonomous indoor navigation
and to be operated remotely for robocup rescue. Because of this requirement, it is developed to be
rugged, featuring suspension and a powerful drive train from a Traxxax E-Maxx (Figure 43). An
E-Maxx is gutted for the motors, transmission and suspension components. These are measured and
digitized into Pro/E. A chassis is designed to hold the motors, batteries, electronic and feature a tracked

suspension system.

Similar to the last project when the Al and the robot are built at the same time, the computer
vision algorithm is developed at the same time as the robot is being built. Since the robot would
require real time processing, a FPGA board is used to run edge detection on the output of a web camera
[Krau06]. The FPGA is able to process 437 bitmaps a second which is much faster than unoptimized
edge detection code can run on a laptop. Unfortunately the Ethernet used to transfer the image can

only handle a few bitmaps a second.

The end result of the robots design is shown in Figure 44 and the FPGA design in Figure 45. The
boards are assembled and tested. Figure 44 shows a computer connected to the Via board. A game
pad on the computer is able to control the motors and by using a web cam with a built in servo, it is

able to aim the camera. Unfortunately the chassis shown in Figure 41 was not built.
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Figure 40 Pro/E rendering

Figure 42 PCB layout
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Figure 41 Pro/E rendering

Figure 43 Traxxax E-Maxx



Figure 45 FPGA edge detector development
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2.3.4 Results of the second project, the second system effect

[Broo95] states: “As he designs the first work, frill after frill and embellishment after
embellishment occur to him. These get stored away to be used “next time.” Sooner or later the first
system is finished, and the architect, with firm confidence and a demonstrated mastery of that class of
systems, is ready to build a second system. The second is the most dangerous system a man ever
designs. When he does his third and later ones, his prior experiences will confirm each other as to the
general characteristics of such systems, and their differences will identify those parts of his experience
that are particular and not generalizable.” and “How does the project manager avoid the second-system
effect? By insisting on a senior architect who has at least two systems under his belt.”

It is clear to see how the second system effect doomed the second project. Rather than look at the
goals of the second project, the intent was to create a better version of the first project. For the second
robot, is all the extra capacity on the electronic boards really necessary? Is it necessary to have a
tracked system with suspension? Is it a wise idea to try and make a photo realistic 3D simulator where

game engines have large teams of developers and they themselves are not photo realistic?

After implementing the 3D simulation it was realized that much of the time spent on creating a
game is not on the core engine itself. Looking through the credits on any modern game, more of the
personel are devoted to the level design rather than the core engine. It would have been wiser to use a
preexisting game engine as the simulator. When designing the electronics, it might have been more
cost and time effective to use off the shelf parts. When designing the robot, it should have been known
that trying to design for two goals, indoor autonomous navigation and robot rescue would doom the

robot to do neither well.

Given that the main goal is to achieve 3D vision, how can the project be better managed to
support this goal? Instead of trying to implement a photo realistic simulation why not use a game
engine that has free education licensing [Unre09]? Or better yet why not record video and use that as
input? Using recorded video forces the simulation on the given path, but for vision purposes it would

suffice. Instead of designing a complicated robot why not just use a simple one with a laptop?

After reevaluating the work completed so far it was decided that it might not be realistic to be able
to complete a robot that can autonomously map in real time. Instead, this thesis is refocused on the
SLAM problem. A new simulator is created out of the code from the second simulator to simulate the

output of vision processing, points and lines.
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2.4 Third Simulation

After the thesis is refocused on a SLAM algorithm it was decided to use the code of the second

map editor/simulator to develop a simpler simulation to simulate the output of point and line detector.
CEX

M mapeditor
File Swap Plug Ins

T~ S +0 MR

Number of Planes: 4, Num lterations: 12

Eﬂp :JJ [o j [0 j
Aop Initialized Fine _J

Figure 46 The simulated points and lines seen in the bottom left The bottom right has the results of

the EM algorithm.

Figure 46 shows a simulator which given the robots viewpoint, produces 3D points and lines for

use in vision algorithms. This simulation is far less complex than the second one, as some of the
functionality such as CSG and PVS is no longer required.

Some new features are added to this version. This project uses a more advanced interface system
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such that it is possible to swap the program from being a simulation to being a map editor. It also uses
a plug in Al system so that the Al is programmed in a separate project and then integrated into the

simulation by loading a dll file.

The line algorithm rendering algorithm is interesting since it is similar to the earliest 3D
renderers. A scene is sorted using a BSP and then all objects are rendered in back to front order. The
lines of a polygon are extracted and placed in a software z buffer. The z buffer knows that any
incoming lines are closer to the viewer than the previous ones. Any previous lines that fall inside of the

lines of a closer polygon are overdrawn.

The points are rendered differently. Each polygon has points statically created. Then to see if a
point belongs in the current view, a ray is projected from the points location to the robot viewpoint. If
there are no collisions then the point is viewable. If there is a collision or if the point is not in the

viewing frustum it is occluded.

The third simulation is used to evaluate the next chapters ICP and EM algorithms.
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Chapter 3  The search for the Algorithm

3.1 Introduction

There are many different ways to provide a robot with autonomous mapping capability. This
thesis starts with 3D points. 3D points can be generated from a stereo camera setup where features
points are computed from each camera and then combined to form a 3D point cloud. Processing can
occur directly on the points, or the points can be transformed into a higher order primitive. Different
algorithms can then be used to register multiple readings of the same features. This chapter explores
some of these methods and then attempts to create a new algorithm to meet this thesis's objectives.

The sections 3.2 to 3.5 describes the exploration of previous work done on this topic. The
discussion then goes off in a different direction as the methodology chosen for this thesis is for the
SLAM algorithm to operate on planes while maintaining as much past data as possible. Multiple
attempts at creating an algorithm to achieve this goal is presented in section 3.6. This chapter does not
arrive at a successful solution to planar SLAM, but through multiple attempts at creating the algorithm
the problem is better defined. This makes it possible to solve the SLAM problem in Chapter 4: The
Relative Plane Algorithm.
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3.2 ICP

3.2.1 Introduction

Iterative Closest Point (ICP) is an algorithm that computes the difference of rotation and
translation between two 3D point clouds. The algorithm is originally described in [BeMc92]. The least
squared solution is given in [ArHB87] which includes a useful explanation of some special cases that
did occur in simulation. A version of the ICP algorithm that is used successfully in a small
environment is reported in [SaEs04].

There are various design choices in implementing the algorithm. An example of these are
described in [RuLe01] such as which points to pick (all of them or take a sampling), and what matching
criteria to use. Zinber et al, [ZiSNO03] describes several refinements to improve performance. ICP can
be used in some cases as the method to localize the robot's position [MiSi06] [SNJMO04]. One caveat
in using ICP, is that when two point clouds are compared, the distance traveled by the robot to generate
the second point cloud cannot be so large as to create an aliasing effect [GaSo04]. The algorithm

looked promising so it is implemented and tested in a simulation.

3.2.2 ICP Algorithm
1. Remove the mean from both point clouds.

2. Iterate until the error of the difference of the point clouds is within desired bounds, or if a

certain number of iterations have passed.

3. Load all the points from the second point cloud into an overlapping quad tree An overlapping
quadtree is a tree structure that is subdivided into a certain amount of cells at creation time
(some quadtrees only divide the cells when objects are loaded into them). These cells overlap
each other by a given amount. All points are loaded into the quadtree and are placed into every
cell which it fits into. The advantage of the overlapping feature is seen when retrieving a list of
points to be compared to a single point. The cell that contains the point without including the
use of the overlap contains all points that are closest to that point given the overlap size. So it is
guaranteed that all points given an overlap size are in the cell. This leads to very fast point

retrieval as the quadtree does not need to be traversed if a point is located at the border of a cell.
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. For each point in the first point cloud, get a list of points that are close to it from the quad tree.

Find the closet point match and save that point.
. Load the matrices for the singular value decomposition (SVD) [ArHB87] and perform the SVD.
. Perform the rotation on the second point cloud and reiterate the algorithm.

. Rotate/UnRotate one of the means by the solved rotation difference and then compare it to the

other to get the location difference for the iteration.
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Figure 47 ICP algorithm

The ICP algorithm implemented in the simulation is shown in Figure 47. To verify that the ICP
algorithm is 100% accurate in a simulation without noise an additional step is taken. If a point
disappears or appears between two iterations, that point is not used in the calculation. Figure 47
bottom right window shows the robots true path in orange/yellow and the calculated path in blue. The
blue path is initially offset so the two paths do not overlap. After the robot travels the path several
times the blue path is consistent, showing ICP's accuracy. ICP is also attempted with noise but did not

perform well as shown in Figure 48.
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Figure 48 ICP with noise.

3.2.3 Remarks

Even with noise, ICP gives somewhat accurate position information if looking from a single

iteration's perspective. If using it over a large distance it has the tendency for errors to accumulate.
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3.3 Extended Kalman Filters with particle filters using landmarks

Extended Kalman Filters (EKF) and Particle Filters are covered in one section as they are
combined in FastSLAM [MTKWO02]. Two key papers for the use of the EKF are in [SmSC86] and
[LeWh91]. Dissanayake et al, [ DNCDO1] shows how EKF SLAM could work for an outdoor
environment. A good reference into the topic is the book [ThBF06] and a good starting point to learn

the algorithm is given by [WeBi01].
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Figure 49 The EKF algorithm. Diagram from [WeBiO1]

The EKF algorithm is:
1. Predict the next state by using input from a motion model.

2. Calculate the error covariance using the process noise estimate (. This is the expected noise of

the dead reckoning system.

3. Calculate the Kalman Gain K. K can be thought as a measure of how much to trust the
measured position to the accuracy of the landmarks. It uses R which is the estimated landmark

noise.

4. Calculate the estimate location by mixing the predicted location with the one given by using the
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landmark measurements using the Kalman gain K.
5. Update the error covariance for the next iteration.

Notice that the mixing matrix K is only dependent on the variables Q and R. This leads to the
observation where “Under Conditions where Q and R are in fact constant, both the estimation error
covariance P, and the Kalman gain K will stabilize quickly and then remain constant” [WeBi01]. So if
there is a flat noise model the Kalman filter can be thought of as simply mixing the result of the
landmarks with a predict position of the robot's movement. Often the noise model used is that
landmarks with a longer distance have more noise, so the closest landmarks would have a greater
weight than the farther ones.

Using the tutorial example given in [WeBi01], a scalar random constant is estimated using the
Kalman Filter. The results are shown in Figure 50, Figure 51, and Figure 52. The red dots shows the
actual noisy values while the blue line shows the estimated value. When Q is much lower than R in
Figure 50 the predicted model is more trusted than landmarks measurements and convergence takes a
while. When Q and R are closer together in Figure 51 convergence is quicker. In Figure 52 Q is very
high so the predicted model is hardly trusted and the landmarks are used. Note that the black line

toward the bottom in all the graphs are the Kalman gains and they converge quickly.

A full EKF SLAM example is programed in Matlab to see how well it works. Figure 53 shows
the results. Even though the prediction location has noise inserted in it, the resulting location is not that
bad as the noise has no bias. The robot in Figure 24, like many robots had a bias when turning. This is
simulated in Figure 54 which has an added bias to the odometry noise. The predicted location is far
less accurate with the robot having a bias, but the EKF is able to keep the estimated position in the

correct location.
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Figure 50 Low Q Figure 51 Mid O

Figure 52 High Q
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Figure 54 SLAM with odometry bias

44



One drawback to the EKF is the processing time. “The quadratic complexity limits the number of
landmarks that can be handled by this approach to only a few hundred” [MTKWO02]. It is further
elaborated in [CGDMO09] “the complexity is dominated... in the measurement vector size for the EKF
update..... more than a hundred features are currently running at 1 Hz in an Intel Core 2 Quad at 2.83
GHz”.

An algorithm that can scale better than the EKF SLAM is FastSLAM [MTKWO02] that uses
particle filters. Rather than be computationally bound by the fact that the EKF matrices are the size of
the number of landmarks, FastSLAM uses particles. Each particle uses an EKF for each landmark, so
the EKF is no longer affected by quadratic complexity. The particles represents a probabilistic density
field of where the robot could be.

In terms of accuracy [ThBF06] states “As the number of particles goes up the accuracy
approaches the EKF” so the EKF is more accurate given ideal noise but it is possible for the particle
filter to approach the same accuracy while taking far less computation time. FastSLAM outperforms
the accuracy of the EKF given non ideal noise. The accuracy of EKF versus FastSLAM is examined in
[SaMNOS8]. The high accuracy of the EKF is shown under Gaussian conditions but “how fragile the
EKF-SLAM can be due to non-Gaussian implication”. The paper cites the accuracy of FastSLAM with
non-Gaussian noise but does mention the potential of “there will not be enough particles left to
incorporate for the rest of the path estimation... the filter diverges and the result will be catastrophic.

This property that affects the performance of FastSLAM is called sample impoverishment.”

FastSLAM also has the advantage of, “It has been observed frequently that false data association
will make the conventional EKF approach fail catastrophically, FastSLAM is more likely to recover
thanks to its ability to pursue multiple data associations simultaneously” [MTKWO02] One draw back
may be that the computational complexity scales by the number of particles required which might
“depend linearly on a particle-filter specific parameter (the number of particles), whose scaling with
environmental size is still poorly understood. None of these approaches, however, offer constant time

updating while simultaneously maintaining global consistency of the map” [ TKGW02]

An interesting quote is “The robustness of FastSLAM becomes apparent... ...simply ignored the
motion information. Instead, the odometry-based motion model was replaced by a Brownian motion
model. The average error on FastSLAM is statistically indistinguishable from the error obtained

before.” [ThBF06].
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One disadvantage of FastSLAM without odometry is “Impractical to work without odometric data
because it will require a lot of particles and a very large noise covariance” [Husal0]. [EISL06] uses

FastSLAM with visual odometry at the cost of an average time of above one second per iteration.

Perhaps the advantages and disadvantages of FastSLAM versus EKF is best described by
[FuWi03] “Particle filters approximate the posterior distribution with a set of samples that simulate the
probabilistic model of the system. Thus, they are applicable to a range of general, non-Guassian, non-
linear models. However, with a few exceptions, these methods are purely simulational in the sense that
they sample the complete state space. Hence, for large systems, the sample size is too large to be
practical.” and the EKF “represent the belief state as a mixture of Gaussians.... Their Gaussian
representation and focused search provide an efficient solution to high-dimensional problems. At the

same time, non-linearities and merging can introduce significant bias in the estimate.”

It is also possible to speed up the EKF by using sub mapping. A map is divided into smaller areas
and each area has its own EKF which improves the processing efficient of the algorithm by keeping the
matrices small. [LMSKO03] uses a layered approach combining EKF with topological maps. [Fres07]
provides a framework called Treemap to subdivide an area into smaller ones based on which features

are close together. [PiTa08] uses a single camera and divides the features obtained into sub maps.

One more approach to speed up the EKF is to use the inverse of the covariance matrix, the
information matrix. The information matrix stores links between pairs of features which is sparse
[TYDGO4]. The result is a faster algorithm but there are issues in maintaining the sparcification of the

matrix.
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3.4 Non landmark algorithms

Rather than defining a map by a small number of landmarks, some algorithms define a map by
labeling if a space is occupied or not. Occupancy grids consist of an area being mapped into 2D or 3D
cells and each cell is probabilistically occupied or not. Algorithms that use occupancy grids can use
EKEF, particle filters, or just scan matching to register multiple readings.

It is interesting to observe that scan matching with raw laser output yields pretty good results by
itself. Hahnel et al, [HaSBO02] discusses laser scanning with a probabilistic occupancy grid and
dynamic objects. It has a filter to compensate for dynamic objects. The filter improves the map
however both maps, map the outline of the area correctly. Hahnel et al, [HBFTO03] compares a map
taken of a robot traveling in a loop several times. Although the scan matching map had inconsistencies

in it, it is still mostly accurate as compared to the version that had a particle filter applied.

Vision based occupancy grids have been shown to work. Some work uses 2D grids [MuLi00]

[EISL06] while some use 3D grids [Mora96].

With vision based SLAM there is a question as to what primitives to use. A disadvantage in using
points as landmarks is that the quantity of points may be high. It is possible to undergo additional
refinements to reduce the number of points used [SSSD06]. Another way to reduce the disadvantage is
to transform the points to higher level primitives that reduces the number of entities registered on the
map. This is done using an EM approach, forming planes out of points [WeSi05] [TCLHO04]. It is also
possible to use general polygons [ShBa04], and other higher order primitives such as boxes in

[SKYTO2].

One note about any algorithm that uses scan matching is that sometimes scan matching is
insufficient to create a map. Ellekilde et al, [EHMDO7] uses a laser range finder to build a 3D point
cloud map, but if there are large distances between scans there might be an aliasing effect. It might not
be possible to reconstruct the map using scan matching alone since there is not enough information to
correctly align the scans. The approach taken is to use vision sensors to generate approximate positions

that are then used to align the scans.
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3.5 EM Algorithm

3.5.1 Introduction

The expectation maximization (EM) algorithm [Demp77] uses as input a 3D point cloud and
generates planes from the point cloud. The algorithm is a general purpose algorithm that contains two
steps. The E step where the data is mapped to a given model, and then the M step where the parameters
of the models are maximized to fit the data. The model itself is generated randomly at the start of the
algorithm and is continuously adjusted with additional random parameters to fit any data that is not yet
matched to the model.

The EM algorithm solves the dual problem of not knowing what planes exist in the 3D point
cloud, and given the planes; which planes do each point map to? A very good tutorial that is worth
reading on using the EM algorithm to match 2D points to lines is by [Weis97]. The EM algorithm can
be used for 3D points and planes as shown by [TCLH04]. There are variations on the algorithm such
as [WeSi05] that first subdivides the space into cubes of .25m of length before running the EM

algorithm, so that plane size expansion is not an issue.

Perhaps the best way to explain how the EM algorithm works is to simply list the steps in the

algorithm. There are two different implementations listed in the following sections.

3.5.2 EM Algorithm 1
1. Iterate the algorithm until ending conditions are met which are calculated later in the algorithm.

2. Each known plane contains a point list of all points that match to it. At the start of the iteration
it contains the points from the previous iteration. This version of EM matches all the points

every iteration so reset the list.

3. Match the points in the point list given as the input data of the algorithm. This list is static
except for each point in the list having a counter which counts how many planes use that point.

That counter is reset every iteration.
* A point is said to belong to a plane if:

© The point has to be within the bounding box of a plane which is expanded from

the starting bounding box with an expansion constant. This is done since a
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plane's initial bounding box contains only the original three points used to create

it. Without some expansion the plane cannot grow.

o The point is at least a minimum distance to a plane given by the distance to plane

equation.

It is possible to either have a point match to every plane that it belongs to or to just the

one plane that has the smallest distance of all the planes.

If the point fails to match to any plane then add the point to the unmatched list that is

later used to generate new random planes.

Any time a point is assigned to a plane its usage counter goes up by one. This is used to

cull planes that do not have any exclusive points.

4. Recalculate the bounds of each plane so that all the points fit in the normal rather than the

expanded bounds.

5. Check for ending conditions

Most or all of the points have matched to planes.

A certain number of iterations have been run and it is time to give up so the algorithm

does not run forever.

There are no new valid planes created in the last few iterations. If for several iterations
that are no new established planes it can be said that the EM algorithm is done even if

there are many points that have not yet matched.

6. If the ending conditions have not been met yet then pick new random planes out of the list of

unassigned points

Pick a point at random from the unassigned point list.

Find the two closest points to the random point. The points have to be within a distance

threshold. Ifthey are not then a new plane cannot be made out of that random point.
If there are two valid nearby points then create a plane out of the three points.

Iterate the algorithm several times until the desired quantity of random planes is found.

If the algorithm has iterated past a threshold then stop since it is unlikely that new
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7.

8.

10.

11.

3.5.3

1.

2.

random planes can be found.

Perform the algorithm described in [DrGe03] that uses total least squares to maximize the plane

parameters given the point list for each plane.
* Find the centroid of all the points.

* Make a 3 by N matrix features [Xi-X¢,Y1-Ye,Z1-Zc;-... Xn-Xe,Yn-Ye,Zn-Zc] fOr all points in the

point list [1..n]

*  Multiply by the 3 by N by its transpose to get a 3 by 3 matrix called “M” and then takes

its singular value decomposition (SVD)

* The SVD of M is M = USV". The S matrix contains singular values on the diagonal.

The lowest singular value corresponds to the normal of the plane given in the matrix.

Merge planes that have a similar plane equation parameters and bounding boxes that overlap.

The merged plane contains the points from both planes that have been merged.

For every plane make sure it has at least a minimum number of points. If it does not remove

that plane.

Remove planes that do not have enough exclusive points. Search through all the points for
every plane and use their plane usage counter to calculate the percentage of points that are
exclusive to the plane (have a count of one). If the percentage is too low then remove the plane.
Since planes are randomly generated it is possible for extraneous planes to be created. An
example of which is a plane that is created near the intersection point of two planes that connect
the two planes together. In this case its exclusive percentage would be 0% so it could be easily

removed.

After the EM algorithm is done iterating, convert the bounding box to rendering points given
the plane equation. This is done by selecting the four points in the bounding box that are closest

to the plane.

EM Algorithm 2
Load all the points into an overlapping quad tree

Iterate the algorithm until ending conditions are met which are computed later in the algorithm.
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Generate a list of all points that are not attached to a plane yet. This has to be done by looking
at the usage counter of each point since there is not an automatically generated unassigned list

in this algorithm.

Generate one random plane. This is done by picking an initial point from the generated
unassigned list and then searching a list returned by the quadtree for the closest two points. If it
is not possible to pick one new random plane after a certain amount of iterations then end the

algorithm.
Search for points to match to this new plane by doing an iterative process:
* Expand the planes bound by an expansion constant.
* Retrieve the point list from the quadtree given the initial random point of the plane.

* Go through all these points adding them to the plane if they are less than a maximum

distance to the plane (equation) and in the bounding box of the plane.

* Perform the algorithm described in [DrGe03] that is used to maximize the plane

parameters given the point list for each plane.
© Find the centroid of all the points.
© Make a 3 by N matrix features [x1-xc,yl-yc,z1-zc;.... Xn-Xc,yn-yc,zn-zc|

©  Multiply by the 3 by N by its transpose to get a 3 b 3 matrix called “M” and then

takes its singular value decomposition (SVD)

© The SVD of M is M = USV'. The S matrix contains singular values (on the
diagonal). The lowest singular value corresponds to the normal of the plane given

in the matrix.
* After the plane maximization.
©  Cull the plane if it fails to have a minimum amount of points.

o Start from the random point again and see how the point density of the plane
changes as the plane is gradually expanded. If the density becomes too low then
stop expanding and remove any points that are not in the higher density portion

of the plane. This is done because sometimes a plane attached to a point from
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another plane because it is close enough even though it should not. By checking

the density this case can hopefully be eliminated.
* End the iterative process after a few iterations.

6. For every point selected in the now completed plane, add to their counter so they are no longer

selected to generate a new random plane. Then recompute the unattached points list.
7. Merge the new plane with any others if possible.

8. Iterate until there are only so many points left, or a certain amount of iterations have passed, or

an exit condition is arrived at (cannot generate a new random plane).

9. Remove planes that do not have enough exclusive points. Search through all points for every
plane and calculate the percentage of points that are exclusive to the plane. If the percentage is
too low then remove the plane. Since planes are randomly generated it is possible for
extraneous planes to be created. An example of which is a plane that is created near the
intersection point of two planes that connect the two planes together. In this case its exclusive

percentage would be 0% so it could be easily removed.

10. After the EM algorithm is done iterating, convert the bounding box to rendering points. This is
done by first looking for the 4 points in the bounding box that are closest to the plane equation.
If the plane is rotated about the Y axis the bounding box may not align with the actual plane. To
align the bounding box, rotate the bounding box incrementally by a total of 180° and search for
the best fit. The best fit is the one with the lowest absolute value of distance from each point to
each of the four lines in the bounding box. Rather than run the algorithm many times
incrementing the angle checked by a small amount, each time a large degree increment is used.
The best value is then subdivided into a range with smaller increments, and the best angle can
then be subdivided again. This only has to be done at a few different increments to get a good
result. In addition to adjusting the angle, the size of the bounding box is shrunk during the

iterations so it fits the points as tightly as it can.

3.5.4 Remarks

The first algorithm keeps more to the spirit of the EM algorithm by recalculating all the planes

every single iterations. The second one executes about twice as fast and takes advantages of the fact
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that once a good plane is found it is unlikely that it is going to be removed.

Before the algorithms are tested in the robot simulation, they are first tested in a test bench shown
in Figure 55. The test bench randomly generates planes and then generates random points inside of
each plane. These points are sent to the EM algorithm which then computes the planes that the points

match up to. The EM planes can then be visually compared to the actual planes to see if it worked.

Bl emtestbench
File Edit Help

Figure 55 EM algorithm test bench
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The algorithm is very sensitive to having two planes close together. Figure 56, Figure 57 and
Figure 58 show how sensitive the EM algorithm can be when two planes are close together. In Figure
57 the horizontal plane uses points from the vertical plane and Figure 58 the vertical plane uses points

from the horizontal plane.

It is important when two planes are perpendicular that they are constructed correctly. Figure 60,
Figure 59, and Figure 61 are supposed to have one larger plane perpendicular and attached to a second
smaller one. Figure 60 shows when the constant used to calculate the distance from point to plane is
too large and the larger plane uses too many of the smaller plane's points; the smaller plane is computed
incorrectly. Figure 59 shows when points can match to multiple planes and there is no check to see if a
plane has enough exclusive points. An extra plane is created that has no exclusive points but
technically is correct otherwise. Figure 61 Shows what happens if points can only be used once so the

planes are unattached when they should be attached.

The EM algorithm is also sensitive to the fact that the random points used to pick the seeds for
each plane are going to be different each time the algorithm is ran. In fact the the ordering of the
incoming points can be different each time too. This is why the implementation of the algorithm
contains such functionality of making sure each plane has enough exclusive points, and growing out the
planes by expanding the bounds incrementally. The hope is that regardless of the random points used,

each run the EM algorithm returns the correct result.

55



3.6 Journey to the Algorithm

3.6.1 Introduction

Earlier work on autonomous robotics [Krau02] showed that a robot's dead reckoning sensors are
very accurate going forwards and backwards but much less accurate turning. Using planes as the
lowest level primitive instead of points is attractive since the orientation problem can be solved by
maintaining the orientation of the planes in a map.

This led to the desire that the SLAM algorithm used for this thesis would use planes. Planes can
be created from points with the EM algorithm shown in the previous section . Watching a simulation
of the EM algorithm is very intriguing. It seems obvious what the global map is when watching the

simulation. But what algorithm can be used to generate a map given planes?

Much of the current literature on SLAM algorithms using 3D points use the EKF or a Particle
Filter (FastSLAM). Using planes as a primitive add extra information to the problem as each plane has
a normal that can be used to compute the robot orientation. However, it also has a disadvantage as the
plane has both translation and rotation noise and a plane grows and shrinks as the robot passes it. EKF
and FastSLAM are known not to work with dynamic movement. Perhaps a different approach can be
used that stores past untransformed readings.

The goal is to create a SLAM algorithm that uses planes as the input, and can solve the dynamic

movement by using past data. In addition, the computational complexity should be better than O(n?).

3.6.2 First Attempt

The first attempt at creating a SLAM algorithm is to combine the ICP and the EM algorithm. The
difference in a plane's location is computed between subsequent iterations, and that is used to generate
the position of the robot. Each untransformed plane is transformed given the current location of the
robot to compare them to planes in a global map. If they are close to a known plane, they are placed in
storage of that known plane. Then each known plane is recomputed as the average of all planes stored.
If a plane does not match up to an existing one, it is added to the global map. There is functionality to
remove and merge planes if necessary.

Unfortunately even without noise the ICP using planes is not accurate as shown by Figure 62. In
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the upper right corner, the blue line is the position given by the ICP and the red/yellow line is the true
position. The error is possibly caused by that fact that the ICP uses the plane midpoint, and the
midpoint changes as the plane grows and shrinks.. To see what would happen with correct ICP, the true
global coordinates are fed into the algorithm and the results are shown in Figure 63. In that figure the

map is built correctly.

Figure 62 Combination of EM and ICP
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Figure 63 Combination of EM and fake ICP mapping

The results seem to show that the focus should be on trying to locate the robot as accurate as
possible. This unfortunately is the wrong approach as described at the end of this chapter.

To further look into this problem a simpler simulation is used as shown by Figure 64. In the four
planes problem the planes are always visible. The goal is to figure out a way to generate accurate

position data in a way that does not use the planes midpoint.
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3.6.3 Second Algorithm

The second algorithm attempts to solve the problem by averaging the untransformed planes given
an interval range.

A binary multiple, say 2" observations of a given plane is chosen to be used to create the plane's
average. Each plane is compared to its nearest plane (e.g plane 1 to 2, plane 3 to 4) assuming each is
the starting plane and averaging the results. Then each of the computed averages are combined with
their computed average of the same level and so on until only one plane is left. This plane is now the
global average. If there are insufficient planes available say 3 when 4 are required, then the 3™ plane is
upgraded a level, as it is considered to be the output of the merging of plane 3 and 4. The first
observation can no longer be used as the current observation if the current iteration is more than 2"
beyond the first observation. In that case a saved value of the calculated plane average at n - 2" is then
used as the first observation. This will correctly orient the mapped plane to its proper location on the

map.

This algorithm is shown to mostly work in the simulation As the simulation runs, the mapped
planes are correct at least in the short term. For some reason in time, the mapped plane would
gradually drift away from the correct position. As soon as the drift is large enough new readings of a
plane no longer match to the global one, which causes the algorithm to fail. The drift can be fixed by

locking the planes location after a certain amount of iterations have been seen.

The algorithm is then converted to using the distance to plane equation rather than the midpoint.
It would only use planes that are approximately perpendicular to the robots viewpoint. It did work
under ideal conditions that perpendicular planes are always available, but it is an unsatisfying solution

as it did not use the edges of any parallel plane which is useful information.

A few things are learned implementing this algorithm. When there is a small amount of error over
time it creates a large enough error so that the algorithm fails. This is due to using the current position
to match current planes to their corresponding planes in the map. Another thing learned is that the

planes growing and shrinking is a more difficult problem than anticipated earlier.
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3.6.4 Third Algorithm

The third algorithm uses a particle filter algorithm. It takes the estimated odometry given by
comparing the plane location between two iterations. Many particles are generated using multiple
planes. Ifthere are an insufficient quantity of particles more can be generated by using an error model.
Then the difference of plane's locations given a span of iterations is used to determine which particles
are more likely and reweigh or regenerate the particles based on this. The theory is that particles which
are created due to planes growing and shrinking would in the long term be found to be invalid and the
true location would be found after those particles are removed. As long as there is one particle in each
point in time that contains the correct movement the algorithm should work.

The representation of a plane is changed from the middle point and angle to the angle and the
plane's four corners. Each rotation/corner pair creates a particle. The particles are created by
comparing corner points in subsequent iterations. The particles created using short term readings are
compared against the long term readings. This process can be repeated for increasing number of
iterations of the long term readings, for example the 5™ reading, the 10™ and then the 15®. It is
necessary to do this since when there is abrupt movement, say a rotation, using a long interval in the
first correction would cause the movement to be smoothed over time which would not be correct.

The algorithm worked well as it could solve the robot's position even after putting artificial
particle error to simulate a planes changing size. However as implemented, it is extremely
computationally expensive and still a small amount of error results. Instead of continuing to work on
this algorithm that would reweigh each individual particle, one that alters the center of mass itself it
attempted next.

One good improvement over the previous algorithm is that when attempting to match a plane to
the list of current planes the global map is not used. Instead the previous plane reading in local

coordinates is used. This prevents errors in global position affecting the plane matching algorithm.
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3.6.5 Fourth Algorithm

The previous algorithm attempted to solve the plane growing and shrinking problem by assigning
each corner point a particle. The side of the plane that is growing and shrinking would give an
incorrect particle and the hope is that this particle would in time be given no weighting. The way it
was implemented proved to be too computationally complex to be used.

For this algorithm the center of mass given all the particles, is generated. After it is created the
individual particles would not be referenced again. A hill climbing algorithm is then used to minimize

the short term error given a longer term more accurate reading.

The first attempt at this created a new back allocation problem. Let's say the algorithm is
minimizing over 10 steps and the first nine are already corrected. The newest, the 10" is incorrect.
This would cause the error in the 10" iteration to be under corrected and the center of mass in the
previous 9 steps to be corrected when it should not. This would cause long term drift based on any

input error.

A solution to the back allocation problem is to minimize the error over several different ranges at
the same time. To make sure the algorithm does not oscillate before permanently changing a value,
any past or future reading that would be effected by that value is checked to see if overall, the error
increased or decreased. If the error increased that change is rejected and the value is rolled back. Then

the percentage, that is how much to change the value, is decreased so the next change would be smaller.

This algorithm had the best performance so far. When injecting error particles without noise it is
able to correct that error. However, after adding in planes growing and shrinking to the simulation
rather than using biased noise particles, the algorithm would no longer work. The reason being is that
the biased noise was removed by using the long term readying which did not contain the accumulated
biased noise. Using planes growing and shrinking, any error created by an edge of a plane changing in
the short term is also there in the long term. Now it is fully understood that the planes growing and

shrinking cannot be treated as a filtering problem, but rather must be identified and dealt with.
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3.6.6 New Direction

It is interesting to understand the mindset when working on the algorithms. Perhaps there is an
error in the interpretation of the first attempt in Figure 63. The mapping worked in Figure 63 after the
location error is eliminated so the thought was to reduce the position error to get the mapping to work.
Later it is found that the planes growing and shrinking creates an error that cannot be regarded as just
being noise and then removed by filtering it out.

When observing the EM simulations it is obvious which plane is growing or shrinking but how to
convert this obviousness into algorithm form? Some logic can be used such as noting when a plane is
changing size and simply ignoring that plane. Ignoring planes might not work if the total number of
planes is small. Perhaps comparing a plane against the global movements of all the other planes can
identify which edge is the one growing or shrinking. However comparing the movement of an edge of
a plane to the average movement can be problematic, since many planes can be growing and shrinking
at the same time. Also noise in one iteration may give the wrong results that would then be propagated
to future iterations.  Another choice can be to compare each plane against every other plane but this

would be inefficient and approach O(n?).

The requirements of a planar SLAM algorithm is to be to identify the static edges of growing and
shrinking planes while having better than O(n*) computational complexity. Thinking about the problem

in terms of this requirement led to the elegant solution described in the next chapter.
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Chapter 4 The Relative Plane Algorithm

4.1 Introduction

The previous chapter describes several algorithms that are unable to solve the planar SLAM
problem. After a while there is a realization that it is not necessarily that the algorithms are faulty,
rather it is how the SLAM problem is defined. The previous attempts focused on using the planes to
generate the current location as accurately as possible since this information is carried forward in
subsequent computations. The focus was on modeling the plane shrinking and growing as noise and

attempted to filter it out. Perhaps there is a different way

Regardless of the SLAM algorithm, planes or objects in general are first observed untransformed
in the robots viewpoint. That is, they are viewed from the robots position being at coordinates (0,0)
before being translated to a global position on the map. Most algorithms concentrate on using a
filtering algorithm to determine the current position as accurate as possible. That position is then used
to register the objects on the map. There is another possibility though. Since objects are seen together,
their relative locations can be found based on their untransformed relative locations. If an algorithm
can represent how objects are grouped together using only their untransformed locations as input then a
map can be constructed. An algorithm such as this does not maintain current position as a state

variable.

The Relative Plane algorithms works with the principle of storing planes in their untransformed
state, and using the average of location and rotation differences in comparisons with other
untransformed planes to form a relative map. Planes are grouped together by observation interval.
Growing and shrinking edges are identified using the pair wise comparisons as the dynamic edges have
a higher standard deviation than static ones. Since all the comparisons are pairwise, the algorithm is
much better than O(n?). The algorithm does not need to use current position except locally for
backtracking and globally for closing the loop. There are additional features to this algorithm such as
being able to work with only one partial plane using a motion model, and a roll back mechanism to

correct errors.

Compared to the Relative Point algorithm in Chapter 6, the planar version is much more complex.

Three sections, 4.2-4.5 are used to describe every aspect of the Relative Planar algorithm for
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reproducibility. However spreading the description over three sections makes it difficult to understand
how the parts of the algorithm work together. This chapter starts with a general overview of the

algorithm in 4.2 Algorithm Description.

4.3 The Derivation shows how the algorithm is developed chronologically and forms the rules
that describe the algorithm. The first problem to be solved is the simple four plane problem in which
there are four planes that are always fully visible at perpendicular angles to each other. This problem of
mapping these four planes is a good starting point to test the basic concept of the algorithm. This step

is described in 4.3.1 The Beginning, the four planes problem.

The next problem to be solved is the 4.3.2 Considering plane visibility, the hallway problem.
What happens when planes appear/disappear from visibility? The simulation is expanded to be able to

simulate this problem. After it is solved it is possible to fully traverse an area.

4.3.3 The enduring problem of calculation intervals talks about the the main issue affecting
accuracy for this algorithm. The fact that the accuracy in position is dependent on the size of interval

used to calculated the relative plane location.

4.3.4 Non uniform plane size, the addition of Key Points finally solves the problem of having
planes shrink and grow which is previously unsolvable by the other attempted algorithms. Adding key
points allow for the shrinking and growing problem to be solved but add a number of other issues that

are solvable but have to be taken care of.

4.3.5 Closing the loop and deciding the current RItXPoint talks about an issue when the robot

closes the loop and introduces the need to calculate the current RItXPoint.

4.3.6 Motion Model, when only one partial plane is visible, when only one partial plane is visible
it is not possible to use the regular functionality to solve for location, and it is not possible to continue
mapping in the case where a plane expands during a rotation. The motion model solves this problem
by restricting the robot to a restricted although realistic movement and calculates the location using a
simple point to plane distance equation. It then computes plane expansion by using the calculated
location. Several issues such as key points in different intervals are found when testing the motion

model and their solution is in this chapter.

4.3.7 Comparison pairs, going back in time, saving the RItXPoint state, pseudo plane merging..

This chapter introduces the concept of going back in time to fix an error that is discovered in the future.
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It contains the solution to the issue of having a finite amount of storage by saving the RItXPoint state.
It discusses rearranging the pairing of planes for comparisons. Finally it has pseudo plane merging

when closing the loop.

4.4 Class Architecture describes each class that is used in both the simulation and the Relative

Plane algorithm.

4.5 One iteration of the algorithm does a complete walk through of one iteration to show how the

rules are executed in the class architecture.

4.6 Closing Remarks ends the chapter by discussing some additional features that are not

implemented, some potential issues, some similar previous work and closes with a summary.
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4.2 Algorithm Description

The section describes the algorithm in steps: starting from when only two planes are visible, to a
full map, to a full map that has growing and shrinking planes, to a full map that has all of the previous

features but also has instances where only one partial plane is visible.

4.2.1 Two Planes

The algorithm receives untransformed planes as input from the viewpoint's perspective. A data
structure called rltplane shown in Figure 65 is used to store a plane's untransformed observation by
iteration using a circular array. During the start of a new iteration each newly seen untransformed
plane is compared to the last added untransformed plane in every rltplane. If a match is found it is

added to that rltplane. If not a new rltplane can be created.

) Untransformed Untransformed
[teration . ) .
location Orientation
(XalaYal) (nXbHYI 9nZI)
) (Xa2,Ya2) (nx2,ny> ,nz,)
3 (x3,y3) (nx3,ny3 ,nz3)
N (XIDYH) (nXIDHYIl 5nZn)

Figure 65: The rltplane structure

The relative location of two planes is translation invariant but not rotation invariant as shown in
Figure 66. To make the comparison rotation invariant it is required to set one of the planes to having a

consistent orientation, say aligned with the x-axis.
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Figure 66: Invariance issue

Given two planes rltplane 1 and rltplane 2, solve the location average difference, Lav, (Ax, Ay)

and average orientation average difference, Oav, over the interval where they are both visible.
The algorithm is as follow:

Initial L,c1v and OaV to zero

For each iteration in the given interval
Obtain the untransformed planes from each rltplane
Rotate both planes so rltplane 1 is at 0 degrees

Add the Axand Ay to L
Add the orientation difference to OaV

Divide L O by the size of the interval

When there is more than two planes a chain is formed by having every rltplane being in at least
one comparison pair and choosing the comparison pairs so there is connectivity from every plane to

every other plane. Say compare rltplane 1 against rltplane 2 and rltplane 2 against rltplane 3, etc.
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Combining the comparison pairs together, a relative map is formed of rltplanes seen together. The
relative map can be converted to a global map by aligning the relative map to its first observations
assuming the viewpoint is initially at (0,0) or some other inputted coordinates. To calculate the current
position, the last stored untransformed plane of an rltplane is compared against the global location of
that rltplane. Note that the current position is regenerated every single iteration and does not propagate
from the previous one. When registering untransformed planes, they are compared to the previous
iterations untransformed planes in each rltplane. This means that the current position in this example is
not used except for display purposes. Any issues, such as variance in the readings and how it affects
current position does not apply to this algorithm, provided the next iteration's untransformed planes can

be matched to their previous iteration's untransformed planes.

4.2.2 Many Groups

As the viewpoint changes, planes enter and leave the current view. This leads to grouping planes

where all the planes are visible in the same time interval.

An rltxpoint group is created when a new untransformed plane is seen and is not visible in the
interval of every rltplane in the current grouping. When this happens, a new grouping is created that
includes the newly seen plane and ones from the previous grouping that are observed with the newly
seen plane. The rltplanes that are present in both groups are used to link the two rltxpoint groups

together when generating the map.

What happens when an untransformed plane is seen that is already being stored but does not
belong to the current grouping? This can happen when backtracking or arriving at a previously seen
area when closing a loop. It is desired not to make a new rltplane, rather the algorithm should identify
which rltplane this untransformed plane should be put into. To do this, the current position is used to
transform the untransformed plane into its global location. The planes global location is then compared
against every rltplane in the generated map. If it matches to an rltplane, it is placed into that rltplanes
storage which will cause it to automatically match to that rltplane in next iteration. This may seem like
a conventional use of current position but it is not. The current position used is generated from the
previous iterations observations and not a state variable that is propagated forward from previous

iterations. The current position only needs to be accurate locally for the backtracking to work.

The backtracking mechanism allows for a loop to be automatically closed as long as the
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calculated current position is within the bounds of plane matching. This requires the current position to
be globally accurate. If the loop is able to be closed the calculated current position automatically

reverts back to the likely more accurate current position given by the first set of planes.

In terms of computation, rltxpoints only need to have their relative map calculated if any one of
their rltplanes have had a untransformed plane added to it in the current iteration. If not, no further
calculations need to take place. This way a map can be very large, however only local information
would be processed. This automatic subdivision means that the algorithm is only as slow as the
maximum number of planes it can see in an interval, and due to the pair based comparison this itself is

an O(n) algorithm with a constant depending on the quantity of planes used to make the comparisons.

A full map is shown in Figure 67.
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Figure 67: A completed map

4.2.3 Key Points

Using the algorithm described so far, it is possible to create a map if it can be assumed that planes
are only seen at their maximum size, never the less due to shrinking as a plane leaves the view and
growing as a plane is newly seen. The next section describes the algorithm to identify and make use of

planes that are growing and shrinking.

There is a simple way to determine which corner points on the plane are the ones that are static
and which are growing or shrinking. Since rltplanes are compared against each other, rather than use

the untransformed planes midpoints to calculate the translation differences, all four corners, or two
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since height is static in the simulation, can be used. Each of the two corners can be compared against
the other rltplanes two corners to form four comparison pairs. Since the rltplanes stores many
untransformed planes it is possible to take the standard deviation of each of the four comparison pairs
average location difference. The pair with the lowest is the one that is comparing two static corner

points. The corner which is static is identified as the keypoint. This is shown in Figure 68.

Figure 68: Showing two planes inside of a
viewing frustum
There is an issue if there are two parallel planes, potentially on opposite sides of a hallway
growing or shrinking at the same time. In this case there will be two pairs of keypoints that have a low
standard deviation and without making an assumption of direction of travel it would not be possible to
know which one is correct. To solve this, the rltplane chain comparison has to be altered so that non

parallel pairs of rltplanes are compared against each other.

When using keypoints, the interval with two rltplanes are compared must be considered. It is
possible for a plane to first be growing when it is first seen and then shrinking as the viewpoint passes
it by. In this case two different keypoint pairs are valid at different times. The way to avoid having this
effect the standard deviation, is to split up the calculation interval when the different keypoints are

valid.

A plane when first spotted can be said to be in its growing phase. When it is detected to be
shrinking, the interval is split. Either interval can be used to calculate the rltplanes relative position.
This adds to the complexity to the algorithm as the interval used is the one that is considered the best,
e.g has the most iterations. It is possible that when processing the rltxpoint such as when comparing

plane 1, to plane 2 and plane 2 to plane 3 that the two pairs relative locations are computed in different
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intervals with different key points. This has to be taken into account when chaining together the

relative positions.

4.2.4 Motion Model

Arriving at the end of the hallway as in Figure 69 and having only one plane visible can be a
common occurrence encountered when traveling in a hallway environment. One solution might be to
use the distance of point to plane equation to solve the current position. This unfortunately would lead
to relying on using the previous location to calculate the current location which is not ideal. There is a

better solution than this that is similar.

The plane at the end of the hallway would be correctly placed on the map earlier when compared
to planes passed by that are no longer visible. The problem therefore is not the placement of the plane.
The only unknown information is the planes maximum size as it expands as the viewpoint rotates. So
the problem is not to calculate the current position, rather how to track how the plane expands as the
viewpoint moves. Notice that this means that the rltplanes orientation is not affected by any data taken
when the viewpoint is rotating since it is fixed to its position given by the rltplanes that have been

passed by.
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Figure 69: Only one partial plane is visible
(seen in red in the top right).
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4.2.5 Plane comparison pairs

The simplest way of choosing the plane’s comparison pair is to select them in order of arrival. The
first seen plane gets compared to the second seen plane, etc. This can sometimes lead to inefficient
groupings in terms of the interval size available to compare the rltplanes. The current implementation
uses a O(n?) algorithm to reorder the planes, however there is a faster version discussed in the future

work.

4.2.6 Roll Back system

One benefit of maintaining all or as much possible data is that it is possible to roll back time and
change some part of the algorithms calculations and then roll time forward again. This can be useful.
For example, it can be found that a plane is in a rltxpoint that it should not belong to since its
comparison interval is too small. It would be hazardous to attempt to remove it from the rltxpoint since
it may be used in other places. It is possible to send back a hint that a rltplane should not join a specific
rltxpoint or perhaps join any rltxpoint and then roll back time, use the hint and roll time forward again

thus correcting the problem.

4.2.7 Save System

In case the memory available is not large enough to store every untransformed plane reading, it is
possible to save the best rltplane comparison and to use that instead of relying on potentially less

accurate plane comparisons.

4.2.8 Where errors can occur

Since this algorithm uses the untransformed plane readings and does not have any in between
calculation that can be the source of error, the accuracy of this algorithm is related to the quality of the
intervals used to do the plane calculation. If the intervals available are too small it is possible for there

to be a small noise offsets on the map.

It is also dependent on the input quality of planes it received from the front end vision system. It
may be possible to compensate for larger errors not simulated in this paper such as adding filtering to

remove noise spikes in untransformed planes.
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4.3 The Derivation
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Figure 70 The four planes problem

4.3.1 The Beginning, the four planes problem

The first simulation to be solved is the four planes problem shown by Figure 70. There are four
planes that are visible at all times and the robot travels in a repeating counter clockwise path inside of
the area. The blue planes are the global position of the planes after they are generated into a map. The
blue planes are compared against barely visible adjacent yellow planes which are the current global
position of the last reading. There is some noise generated with each iteration which is shown by the
fact that the adjacent yellow planes are slightly offset from blue planes. There is another set of yellow
planes that are significantly offset from the other planes. These planes are the ones that are in relative
space to the robot's position. They are rendered as if the robot is fixed at the starting position and

planes move around the robot. They are just there to confirm that the robot is viewing the relative
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planes and not the global ones.

So the question is, given the concept of wanting to map the plane location by using relative
position, how is that accomplished? In the start of every iteration, the untransformed data (a plane's
location relative to the robot) is received and then processed. A class is created that stores
untransformed planes called RItPlane. When a new plane is first seen, a new instance of a RltPlane is
created. RltPlane stores the untransformed data in a circular array. It also has functionally to compare
a new plane against the last plane entered. This is an important feature of the algorithm. Planes are
sent to the correct RItPlane without any regard to the current global position. It is only dependent on
matching to the last reading. This is Rule 1. Even if the global position is incorrect for a moment it

will not affect the mechanism to place each plane in its correct RltPlane.

Rule 1:

Add untransformed planes to the known RItPlanes by comparing them to the previous
planes that are stored in each RItPlane. Do not use the previous generated global position
for this operation.

If we could see all the planes on a map at every given moment regardless of which ones the robot
can actually see, how could we generate their relative position. Do we have to process every plane
against every other plane which would be O(n?)? The answer is no. If all the planes are visible for the
same interval we could use differential signally theory [Wiki09c]. If we compare one plane against
another one in any order for the exact same interval we should arrive at the identical map. This is

Rule 2.

Rule 2:

If all the RItPlanes are visible in the same time, a map that is created by chaining together
pairs of planes comparisons should be identical to a map created by chaining together a
different combination of pairs.

Given untransformed planes how should they be processed? There are two choices, using the
planes midpoint and its normal (its angle) or just using its midpoint. When using both the midpoint and

the normal it is possible to describe the relative position given only two planes since the normal can be
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used to describe the angular offset. Using only the midpoint would require a third midpoint to describe
the angular offset, since the angular offset is undefined for only two points. Since the planes do have

normals they are used.

Can we directly compare two untransformed planes to get their position offsets? The answer is
no. Remember that the planes are constantly changing position and rotation relative to the robot so we
can not simply say that plane is always at 0° or 90°. The comparison takes a look at the first plane's
normal and calculates the angle the plane is currently at. Then both planes are rotated by the negative
of this angle to set the first plane as being always 0°. This is Rule 3 that allows for the position offset to
be consistent no matter what angle the planes are viewed at. In Figure 1 if the robot is directly facing
plane 1, comparing plane 1 to plane 2 would yield a negative x value and a position z value. However
if the robot is facing plane 2 doing the same comparison would yield a positive x and z value, which
would cause the average position location to be wrong. However if on the second comparison plane 1
is rotated such that it is the same angle as it is in the first comparison, the location difference would be

identical to both comparisons.

Rule 3:

Compare individual planes, say plane 1 to plane 2 by first rotating plane 1 and plane 2 so
plane 1 is on the x axis (0°). Its position offset to plane 2 will be consistent regardless of the
angle plane 1 is viewed by the robot.

Lets say plane 1 is compared to plane 2, and then plane 2 is compared to plane 3 etc, how is this
combined to form a single map? Remember, the first plane in every comparison is assumed to be at 0°.
To calculate the map assume plane 1 is the starting position and its located at 0°. We could use that to
calculate where plane 2 is relative to plane 1. Then we take that value and save it as the current total
offset. Adding the current total offset to plane's 2 comparison to plane 3 yields plane 3's offset from
plane 1. Plane 4 could then be put into plane's 1 comparison space by adding plane's 3 offset to its
comparison with plane 4. This process would return a map that is correct from planes 1 perspective. It
1s the same as the global map except it is offset as it assumes plane 1 is the starting position. To align it
with the global map plane 1 uses Rule 4 that uses the first reading to align the entire map.

After the map is generated the location can be derived by looking at the last iteration

untransformed reading and comparing it to the map, Rule 5. Note that the location is just used for
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display purposes as currently it has no usage in this part of the algorithm. This is a powerful concept.
In an earlier algorithm the location is used to add untransformed planes to the RltPlane and if the
location is off by a sufficient quantity, the plane comparison would fail and a new plane would be
added. Without using the current location for any computation purposes, any errors in location can be

recovered.

Rule 4:

To align the planes relative offset to the global map, the initial location of a plane(s) is used
and compared to its position in relative space. The difference of position is then used to
align all the planes to their global location.

Rule 5:

To generate the current location, take the last iteration untransformed plane(s) and compare
to the same plane on the map. The difference in location is the current location.

Using this simple algorithm the four planes problem is solved. The algorithm uses all the plane
information from the start and is really quick. The processing time increases by O(n) for each plane
added and by O(n) for each extra iteration calculated, but does not contain any O(n?) functions. It also

runs for a long time and does not have any drift.
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4.3.2 Considering plane visibility, the hallway problem
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Figure 71 The hallway problem

The previous section requires that all planes are to be visible at all times. So how does the
algorithm work when only some of the planes are visible at any time? The solution is to form groups
of planes visible at the same time. When computing the relative position, only planes in groups are
compared to each other. These groups are then linked together by using planes which are present in
both groups to calculate the offset of one group to another. The map building follows this iterative
linking process until all the groups are placed on the global map, Rule 6. The class that forms the
group is called RItXPoint.

A unit test is used before adding a viewing frustum to the simulation to restrict visibility. The unit
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test controls the visibility of planes based on an iteration. This is what is shown in Figure 71. Doing it
this way made it easier to debug, as the exact iteration when each plane is visible is known when

stepping through the code.

Let's start defining some rules for the RItXPoint.

Rule 6:

First compute the relative location of the RItPlanes in each RItXPoint and then combine the
RItXPoints to form a map by using the offsets of the linking planes.

Rule 7:

All RItPlanes in an RItXPoint must be visible to each other, such that there is a interval that
all the planes are visible to each other.

Rule 8:

There must be at least 2 planes linking each RItXPoint to another RItXPoint

Rule 7 states that in an RItXPoint all RItPlanes must be visible to each other. This is important
because otherwise it would be impossible for the relative position to be calculated for planes that do not

see each other.

Rule 8 states that when linking R1tXPoints that there should be at least two planes linking them
together. It would be possible to use only one plane but it is decided two is better and the offset is

averaged between them.

To implement Rule 7, when adding a new plane, the RI1tXPoint generates the minimum interval
where all the planes are visible to each other. If the RItPlane fits in the interval it can be added to the
RItXPoint. If it does not fit a new RItXPoint is created. To create a new RI1tXPoint, linking planes
have to be found. They are found by looking at all RItPlanes from the first RItXPoint and looking for
ones that match Rule 9. After the best linking RltPlanes are found a new RItXPoint is created with the

initial RItPlane and the ones that are used to do the linking.
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Rule 9:

When choosing linking RItPlanes choose the one with the latest starting iteration in the hope
that it will be the best link between two RItXPoints

Now it is possible to form groups. Before moving foward another issue has to be settled

Rule 10:

A plane could only be matched if the normal of the plane faces the correct direction. If it is
the opposite direction a new plane is created.

Rule 10 is found to be important when a simulation had the robot rotate exactly when it is in line
with a hallway, which is a fortunate occurrence since it allowed for the normal issue to be sorted out.
The early simulation did not have any normal culling of a plane, that is the plane is viewable on both
sides. When there is noise and the robot is in line with a perpendicular plane, to the robot the plane
appears to be switching its normal. This occurs since the robot is viewing two different sides of a
infinitely thin wall. The reason it is a problem is that the plane's normal is used to calculate the robot
position when comparing the currently viewed plane to a mapped plane. When the normal is vague
there are two possible positions for the robot to be in. In Figure 72 the normals of each plane are

shown by a red line coming out of each plane.
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Figure 72 Next simulation used to debug the normal direction plus backtracking

This leaves one more issue before this phase of simulation is complete. What happens when the

robot turns around and heads back to return to the starting position? This leads to the next rule.
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Rule 11:

For backtracking ,when a plane cannot be matched to one of the current RltPlanes, the
plane is transformed using the current position and then compared against the global map
to see if it matches against any preexisting RItPlanes. If it does match, the plane is simply
linked to the matching RItPlane. Unfortunately this is the one place where a large location
error would effect things, although only temporally since the situation would self correct if
the location error corrects.
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Figure 73 The full simulation

When the robot turns around it sees the same planes over again. The question is, how to integrate
them? The solution is to take the map from the last iteration and to use last iteration's location to place
the newly seen plane on the global map. If it matches then place the plane into the matching RltPlane,

Rule 11.

There is one more rule required to generate Figure 73. Rule 12 came about when it appears that
the RItXPoints are getting linked together incorrectly. Sometimes a new RItXPoint is created, say X7
(seen in the middle of plane 21,22,23) in Figure 73 due to visibility issues. It indeed should be created,

but after the visibility issues are over a new RItXPoint is created. In this case X8 is created and linked
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to X6 in Figure 73, as X7 is not the best linking RItXPoint. Rule 12 causes a routine to check for the

best RItXPoint to link to rather than the current one.

Rule 12:

When linking RItXPoints make it possible to backtrack to possibility select a better link.

One issue to note is that the RItXPoints that are generated and the choice of planes which they are
linked to is not guaranteed to be optimum. A poor choice of a linking plane could mean that another
RItXPoint is required sooner than it might otherwise be required. The solution to this problem is that it
does not matter that it is not optimum. It would be nice to have an optimum selection but it is not
necessary. This is very similar to a BSP in the way they select planes to split the world. It is also not

optimum but as long as the choices are somewhat good and the BSP is mostly balanced, it works.
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4.3.3 The enduring problem of calculation intervals
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Figure 74 Using the minimum RItXPoint interval for calculations
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Figure 75 Using the minimum RltPlane interval for calculations

85




Figure 74 and Figure 75 show an interesting issue. There are several choices to choose which
interval is used for the RItPlanes to calculated their relative offset. Figure 74 uses the minimum
interval from the RItXPoint which all of the RItPlanes in the RItXPoint are visible together. Figure 75
uses the minimum interval that two RltPlanes are visible to each other regardless of the RI1tXPoint
minimum interval. This is possible because RltPlanes are stored independently of RI1tXPoints. When
using the minimum RltPlane interval in Figure 75 there is more noise in the map compared to Figure
74. The reason being is that the differential signal theory is no longer in effect because the intervals are
different. The reason behind using the minimum RltPlane interval is sometimes the RItXPoint is such
that the minimum RItXPoint interval covers very little iterations between two RltPlanes and this causes
the interval to be too small.

It is possible to reduce the map noise in Figure 75 by doing some error correction when
computing the RItXPoints. Also when looking at why the noise causes problems it is found that the
map noise only occurs with both rotations and positional noise and furthermore it was found to be due
to non zero mean noise since the calculation interval is sometimes small. When the rotation noise is
switched from alternating between three values: a small negative angle error, zero angle error and a
small positive angle error (both errors of the same magnitude as before) the noise disappeared.

The Relative Plane algorithm is dependent on having a sufficient size of intervals for planes to be
compared against each other. If the interval is too small the map can lose accuracy. This is an enduring
problem since the interval used to do the calculations is an issue that occurs many times in this

algorithm.
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4.3.4 Non uniform plane size, the addition of Key Points

Up to now it is assumed that if a plane is seen, then the plane in its entirety is seen, rather than the
plane size changing due to growing and shrinking. The plane growing and shrinking problem has been
the hardest problem to solve and caused the breakdown of the previous algorithms. The very nature of

this algorithm made this problem easy to solve. The solution to this problem is to use key points.

Because planes now are compared in pairs it leads to a very elegant solutions. All planes are
assumed to be of their maximum size and if they are only partially visible then the midpoint is wrong
and must be adjusted. Each plane has four corner points but since the height is assumed to be static
there are two unique points per plane. Estimated midpoints can be generated by offsetting the
maximum size of the plane from both of the two points. If the plane is not at its maximum size only
one of the two assumed midpoints is correct. When comparing two planes, each has two estimated mid

points to give a total of four possible comparisons.

In time, if a plane is growing or shrinking only one of its corner points, now called key points is
static. When comparing two planes, even if both are non static, one out of the four comparisons

should have a standard deviations lower than the rest. The rule is stated as Rule 13.

Rule 13:

Instead of using the actual plane's midpoint to do a comparison, for each plane generate
two estimated midpoints and compare them to the other plane's two estimated midpoints.
This generates four possible offset values for every iteration and use the one with the lowest
standard deviation.

Rule 13 is a very elegant solution to the problem of shrinking and growing planes. It is much
easier to use key points than some sort of global correlation algorithm. It is also necessary since
sometimes only a few partial planes are visible. An algorithm that compares a plane's corner points
against the average movement may not work since the average movement may be too incorrect to be

used. Using key points creates all sorts of other issues as seen in the rules below.

Key point numbering follow a convention as seen by Rule 14. Without this rule when the four
estimate midpoints are calculated, there would not be consistency as to which key points are used.

This is due to the fact that the plane could be rotating.
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Rule 14:

By convention when a plane is mapped to 0°the left side is considered key point 1, and the
right side is considered key point 2. If no key point is valid after the calculation then it gets
mapped to key point 0.

It is possible for a plane comparison pair to be accurate but the key point not be defined. This
occurs when two parallel planes are compared that are growing or shrinking at the same time. This is
possible in the hallway scenario if the two sides of the hallway are symmetric. If this occurs two out of
the four the standard deviations are identically low and the other two are high. When this situation is
detected the key point is mapped to 0. In this case it is required to use a different plane comparison.
This is Rule 15. If only two partially parallel planes are viewable without another plane to generate the

key points the location would not be possible to compute.

Rule 15:

If two parallel symmetric growing or shrinking planes are compared, the offset will be correct
but the key point is undefined. This situation can be discovered if it is found that two
specific key point pairs have a low standard deviation. In this case map the key point to 0
and have it recalculated.

Key points are again required with partial planes to compare the plane as viewed by the robot to
the globally mapped plane. This is due to the fact that the global plane will be its maximum size and

the viewed plane might not so the following rule is required Rule 16.

Rule 16:

When calculating the robot's location from a partial plane, that plane is compared to its
maximum size global plane. To do the comparison, grow the viewed plane to its maximum
size using the key point as a base.

A similar situation occurs when finding out the offset between two RItXPoints and one plane is

larger than the other. If this happens Rule 17 is required.
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Rule 17:

When linking RItXPoints with planes it is possible that one of them is not the maximum size.
Expand the smaller one to the larger size using the key point as the base for the expansion.

When traveling down a hallway, at first, planes will grow from nothing as they are first seen and
then they will shrink to nothing when they are passed. If the entire range is used to calculate the key
points, it will not work properly due to the fact that in different times, different key points are valid.
The solution to this is to split the calculation interval as soon as it is detected that a plane goes from

growing to shrinking. This is done in a function that implements Rule 18.

Rule 18:

Make sure the interval used to compare planes uses the interval when both planes are the
largest possible size where either plane can not both be growing or shrinking. Since there
are multiple intervals, pick the one that has the most iterations.

The key point is stored each time it is calculated. It is important to note that the key point could
only be used if it is generated on the same interval as any computation that requires it. If it is generated

form a different interval Rule 19 is to be used.

Rule 19:

When using a key point for a calculation, make sure it is in the same interval as when the
calculation is to happen. If not recalculate it, forcing it to be computed in a given interval.

There is one further issue with Rule 18. What happens if there is some noise and there is one
iteration where there is a lot of noise and the plane is much bigger than it should be. This is going to
cause errors in the map. The solution is to have a filter on the plane size to regulate the maximum
plane size. If the plane size is too large due to noise, simply remove the iteration where that occurred
from the calculation. This is not implemented due to this not occurring in the simulation and not too

relevant to the algorithm itself. This is stated as Rule 20.
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Rule 20:

Have a filter that looks at the maximum plane size over time and remove any iteration where
the plane size is too large due to noise. (not implemented)

A further note in relation to 4.3.3 The enduring problem of calculation intervals. Key points force the
intervals to be split and that the key points must be recalculated if they are in a different interval. The

interval splitting causes further issues that are seen and resolved in the following sections.
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Figure 76 Bad key points 1 Figure 77 Bad key points 2

Figure 78 Bad key points 3 Figure 79 Bad key points 4

There is unfortunately one case where the key points fail and but it is not necessary to have a
solution. The sequence shown by Figure 76, Figure 77, Figure 78, and Figure 79 show the robot
traveling and a large error occurring in the map. The blue plane is the mapped plane, yellow planes are
the global position of a plane in the current iteration (with a bit of noise so slightly offset from the blue
planes). If the plane is visible with the frustum it is red instead of yellow. Notice how the error

propagates in the RItXPoints that are linked from the first one.

The error occurs when the robot is rotating and the plane in the bottom, second from the left is

just coming into view. The actual problem had to do with using an incorrect interval to do the plane
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comparisons which reduced the accuracy, but posed an interesting question why the plane relative

offset has such a large miscalculation. This simulation has a small amount of noise, and with the small
interval there is enough noise so that the key point with the smallest standard deviation is the incorrect
one and causes the error. Notice that the error self corrected after the fourth iteration as enough data is

available to correct the key points.

This is an interesting problem because it is not possible to guarantee to have the correct key point
when a plane is first seen. The good news is that the problem is self correcting in a small amount of
time and does not cause any cumulative error. The only potential for propagating errors is when at an
instant of an incorrect key points (and current locations) a global match is to occur and it fails. This
might not be possible to occur as the above case only happened due to an incorrect interval. The key

point failure should only occur in a newly explored area that should not have any global matches.

Despite this, there is a possible solution. There is a mechanism that is described later on (it was
not conceived at this stage of development) that can use the future knowledge of a key point to correct
this error. If a key point is noted to change on a plane when it should not, a hint can be sent back to
assign the correct key point and then the past incorrect iterations can be rerun. It is not known if it is
theoretically possible for lasting damage to the map to occur due to this issue so this is not

implemented.

Using key points solved a problem that could not be solved properly with many previous attempts
at a SLAM algorithm using planes as the input data. The main drawback is an increase in the
processing time as the key point require four times the calculation than just using midpoints. Also key
points must be generated at different points in times due to interval mismatches. The key point solution
is elegant but it does come with issues such as processing time and splitting up intervals but these

would have to resolved regardless of the type of algorithm used.
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4.3.5 Closing the loop and deciding the current RItXPoint

Without any extra code when the robot enters a location where it has been before the global

matching mechanism works and the loop is effectively closed. There is strange case that is created due

to the global matching.

Figure 80 Plane 5 not calculated at full size 1

Figure 81 Plane 5 not calculated at full size 2
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Looking at Figure 80 and Figure 81 something does not quite work with the global matching.
Looking at plane 5, notice that it does not fill up. Looking at Figure 80 half of it is red signifying that a
full plane is seen but only half of it is mapped. Plane 5 is being globally matched so X20 never gets a
link with it. X20 never does any processing with plane 5, and even though X0 has plane 5 when it is
full size it does not have any other planes that are in the same interval. Without another plane visible

when plane 5 is at its maximum size, the maximum size is never used for processing.

The easiest solution would be when discovering a globally matched plane to first see if it could be
added to the current RItXPoint. This solved the plane 5 issue but created another issue. Once in the
simulation, a plane appeared during a rotation for a few iteration and it was not added to the current
RItXPoint since the global matching picked it up. After this change in matching order is implemented,
that plane did match to the current RItXPoint. This caused the current RItXPoint to have poor accuracy

due to the now decreased calculation interval.

Instead, the solution is when a global match occurs to create a new RItXPoint with this global
match which would have a new interval to work with. This solved the problem but created a new one
in Figure 82 of having many extra RItXPoints, from 21 without the extra code to 30. To reduce the
quantity of new RItXPoints, a new RItXPoint is not created if the new global matched plane already has
at few RItXPoint references. This is stated in Rule 21

Rule 21:

When encountering a plane that is globally matched, create a new RItXPoint with it rather
than adding it to the current RItXPoint. If the plane has already a few RItXPoint references
just ignore it as it should be mapped correctly already. (This rule is somewhat obsolete due
to the roll back capability that removes RItPlanes if they do not have a sufficiently large
interval to be used for a comparison, seen later in this section)

Much later in the development another solution is developed that prevents a globally matched

plane from ruining the comparison intervals of a RItXPoint but for now this worked.

One further issue to look at, is when backtracking, all the matching uses the global plane
matching routine. Although the routine could be optimized, it has to check a plane against every plane
in the global map, and it is no where near as quick as having the correct current RItXPoint. Due to this,

mainly for processing efficiently there is Rule 22. It states that the current RItXPoint should be the one
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that is the most relevant. When this is added, it improved the total algorithm processing time by about

5% when the robot visits a previously viewed area.

Rule 22:

Every time a plane is successfully added to a RItPlane, increment a counter for every
RItXPoint that is linked to that RItPlane. At the end of an iteration the RItXPoint with the
highest count is considered the current one and gets priority over matching planes.
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Figure 82 Too many RItXPoints
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4.3.6 Motion Model, when only one partial plane is visible

When traveling in a hallway, the robot can reach the end of the hallway and only have a single
plane partially visible. The robot then continues on its journey by turning into a new path. How would

all of the previously given rules operate in this occurrence? Well, they would not be able to.

Having only one partial plane available means that there would not be enough information to
generate any key points. A plane that is only partially visible cannot be used to generate a location
without knowing which side has the key point. If before the end of hallway is reached, the full size of
the plane is known, the algorithm will recover after the turn when other planes become visible. But if
the plane expanded as the robot turns, the algorithm would not have any ability to note the size

increase. This would cause a mapping error.

Arriving at the end of the hallway and having only one plane visible can be a common occurrence
and it is useful to be able to solve this problem. One solution might be to use the change of distance
and change in angle in the one plane to compute the traveled distance. This unfortunately would lead
to relying on using the previous location to calculate the current location which is not ideal. There is a

better solution that is similar.

The plane at the end of the hallway would correctly be placed on the map earlier when compared
to planes that are no longer visible. The problem therefore is not the placement of the plane. The only
unknown information is the planes maximum size. So the problem is not the robots position, rather

how to track how the plane expands as the robot moves, Rule 23

Rule 23:

When only one partial plane is visible, the only relevant information necessary to be solved
is if the plane size expands as previously hidden parts become visible.

How could the robot track distance given only one plane which does not have any bounds? The
only information that is known is the distance of the robot to the plane and any change in its angle.
This leads to the condition that the robot can only be tracked if it restricted to x movement. Any side to
side movement cannot be solved since this movement will not cause any change in observations given

the planes unbound size. Using the point to plane distance equations, x distance can always be tracked
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accurately. Figuring out the current robot angle is simple as it only requires a comparison of the
previous angle to the current angle. If the robot goes forwards, turns a bit, goes forward again, z
distance is generated which is solved by looking at the change of angle compared to the x distance.

This is Rule 24

Rule 24:

In order to calculate movement when only one partial plane is visible a motion model is to
be used. The model states that the robot is only capable of x movement and no z
movement. It is still possible to rotate in any dimension (although the algorithm currently
only supports y angle).

At a certain point as the robot becomes oriented parallel to the plane, the z distance which is
tracked using the robots angle becomes prone to large errors. So care must be taken to restrict z

movement as the plane becomes parallel with the robot. This is Rule 25.

Rule 25:

The motion model is only valid as long as the plane is not parallel to the robot. As the plane
becomes closer to being parallel, noise starts to affect the reading. As this occurs restrict
the movement calculated to the x dimension only.

So now the question is how to integrate in the motion model with the rest of the algorithm. It
turns out, this is not that difficult. Using the previous architecture it would make sense to use some
form of the RItXPoint class to represent the motion model, and to have it fully integrated such that any
of the functionality that uses RItXPoint would not need any code changes. This is exactly how it is

accomplished, as the RItXPoint class becomes the super class for the RItXMMPoint class.

The first thing that is necessary to integrate the motion model is a way to detect when a motion
model is required. The mechanism is stated by Rule 26. When a motion model is detected, a new
RItMMPoint is created. It is given the location of the last known good location Rule 27. This does
allow for some error as this location could contain noise. The RItXMMPoint calculates the estimated

location with Rule 24. That information is used to expand the plane if necessary as stated by Rule 23.
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Rule 26:

A motion model is detected when it is no longer possible to get the current location from the
global map. After a few iterations of not having a location the motion model turns on by
creating an instance of RItXMMPoint. The motion model ends whenever a second plane is
seen.

Rule 27:

The motion model is fixed at the last known global position. This should be safe as at this
point any computation that is done in the previous RItXPoint cannot change since it will
receive no new information.

In order to implement the motion model a new simulation map is created. This is shown in
Figure 83. The simulation is setup just to test the one partial plane at the end of hallway scenario. This
simulation turned out to reveal quite a few situations are not anticipated earlier and led to the

refinement of some of the rules in relation to the key points.

The first situation seen is similar to the one observed in Figure 76, Figure 77, Figure 78, and
Figure 79. Figure 84, Figure 85, and Figure 86 show a situation where in a small instance in time due
to noise the key point on the large plane is miscalculated. Since the plane is very large, it causes a very
a large error in mapping. However like the previous time, the error only occurs over a few iteraitons

and self corrects when enough readings occur.
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Figure 83 The first motion model test

Figure 87 shows an interesting problem due to the way intervals are selected and objects are
compared to each other. When calculating X3 plane 3,5,6 are compared to each other. When
comparing the two planes, the interval that is chosen for the comparison is hopefully the most accurate
one. In this case, the interval that is chosen is the one before the robot did the rotation since there are
more observations. At this point plane 5 is its full size. When plane 5 and 6 are compared against each
other plane 5 is not the same size as it is in the previous calculation. When linking the planes together

an error occurs due to the size mismatch. Rule 28 resolves this issue.

Rule 28:

When calculating an RItXPoint, when chaining the results together say plane 1,2, and 3, the
size of plane 2 in the 1 vs 2 comparison must be looked at in the 2 vs 3 comparison in case
there is a size mismatch. If there is a difference, the offset of the 2 vs 3 comparison has to
be adjusted




Figure 84 Key point failure 1

Figure 85 Key point failure 2

Figure 86 Key point failure 3
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Figure 87 Error due to plane size mismatch when calculating a RItXPoint
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Figure 88 Plane slightly too big for noise
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Figure 88 presents and interesting issue. Due to noise, when rotating it is possible for the plane to
be expanded beyond its maximum size. It might be possible to solve this by using a filter, however the

motion model is always going to be prone to some errors so it is left as is.
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Figure 89 Frustum failure

Figure 89 shows an interesting problem that is not physically realistic. The viewing frustum
longest dimension is the distance between the origin to any corner point on the far plane. This distance
is larger than the distance of the frustum looking straight ahead. When a robot is rotating, it first sees
the big plane expand and then it shrinks a bit. This is observed in the picture as the large plane is
mapped larger than it is currently viewed and this creates an error. This is not a realistic situation as a
real persons' viewing distance is not longer on the edge of the viewing area than the center. This

problem is solved by expanding the frustum size so this does not occur.

102



I rittestbench
File Edit Help

Figure 90 Errors caused by three issues .

Figure 90 contains one of the first simulation of the full motion model test. It worked until the
loop was closed. It has three interesting issues that previously are not seen. The first is that plane 9
and plane 2 are the same plane, so should they be merged? The reason there are two planes is that the
robot started pretty much where it is located on the map presently so it only saw a smaller version of
plane 2. Plane 9 which is generated on the return trip is the larger correct version. To merge them the
global map would have to be used and each plane compared to each other one to see if any are the
same. That operation is not too difficult but there is the issue should they be merged? When there is no
noise it would appear that they should however when there is noise, that opens up questions on how it
will effect the accuracy? Due to the noise issue the plane is not merged however there is some loose

connection described later.
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The second issue in Figure 90 is that the size of the first reading of the planes used to align the
map with the global version is different as plane 2 expanded on the return trip. The size used in the

comparison to align the map to the global map has to be adjusted to compensate for this.

The third issue in Figure 90 has to do with the key points, in that some are not available since they
are not required in the first pass but required in the second one. Figure 91, and Figure 92 contain a

related problem with the key points being incorrect.
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Figure 91 Plane 4 should be bigger
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Figure 92 Plane 6 not calculated well
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The problem in Figure 90, Figure 91, and Figure 92 led to the realization that is is possible that
the key point available is the wrong one since it is generated in an earlier interval. There is also the
possibility of a key point not existing. It is at this point that the need for Rule 19 is required, in which

key points are recalculated if they are on the incorrect interval.
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Figure 93 A finished simulation run of the motion model

Figure 93 is the completed simulation for testing the motion model. It contains the solution to one
final issue. Normally when exiting a motion model a new RItXPoint is created. However when
returning to the same place as before why create a new RItXPoint? Rule 29 is created to resolve this
issue. Note that when entering a motion model it is always required to create a new RItXMMPoint

because it is unknown if the robot is going to travel the same direction as the previous RItXMMPoint.
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Rule 29:

When exiting the motion model, if there are any preexisting RItXPoints that contain all of the
viewed planes based on global matching, switch to that RItXPoint. If this RItXPoint does not
exist, create a new one.
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4.3.7 Comparison pairs, going back in time, saving the RItXPoint state, pseudo plane

merging.

4.3.7.1 The problem of bad plane comparison pairs

Figure 94 Plane 6 should not be in X0 Figure 95 Plane 6 should not be in X0

Figure 96 Plane 6 now fully mapped

Figure 94, and Figure 95 show a sequence where the bottom right plane (in red) is added to the
starting RItXPoint. As it turns out the bottom right plane, plane 6 appears nearly exactly when the top
left plane, plane 5 is leaving the view. It only is in the RItXPoint for a very brief time, and to make

matters worse it is being compared to plane 5. Since plane 6 and plane 5 are only visible together for a
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very short time, the calculation uses a very small interval and only when plane 6 is of a small size.

That is why plane 6 is not really visible in Figure 94, and Figure 95 although it is mapped as seen by
the link. The problem is compounded in that plane 6 is also used to link the RItXPoints together. Plane
6 1s later visible in Figure 96 after a restriction is placed on planes with small intervals cannot be used
to link together RItXPoints. But then in Figure 96 there are now many more RItXPoints than

necessary.

Currently planes are compared by the order in which they are first observed. This would
normally work but in this case these planes 1 to 5 are all viewed together in the start of the simulation
so the order in the RItXPoint is the same order that they are stored in the simulation. There is a

possible solution in Rule 30.
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Figure 97 Bad key point calculation due to plane comparison used

A similar problem is seen in Figure 97. In this figure, plane 4 is misplaced. This is due to plane 4
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being compared to plane 10 and the two are coplanar. Plane 4 is shrinking as plane 10 is growing.
This causes two of the key points comparisons to be correct. Key point 1 of plane 4 when being
compared to key point 2 of plane 10 returns the correct value. However key point 2 of plane 4 is
shrinking at the exactly the same rate that key point 1 of plane 10 is growing which gives a valid result.
This is exactly the same issue as Rule 15 of two parallel planes except in this case the offset is not
correct. Possible solutions would be to assume the direction of travel which would cause the correct
key point combination to be chosen, or doing a distance test and in the case of the parallel one the
distance would be the same. If one of the two are shorter as in this case, use the shorter one. A better

solution might be to implement Rule 30.

Rule 30:

During a RItXPoint computation the plane pairs should be chosen so that the pairs
maximize the total amount of intervals used to compute the RItXPoint. (only partially
implemented)

The first attempt to implement Rule 30 is a simple algorithm. First an n by n matrix is created
comparing every plane in an RItXPoint to each other and if their key point is valid then record the size
of the interval used in the plane comparison. If the key point is not valid, then record a negative one so
that combination is not used. The matrix construction is O(n?). Then a O(n?) search starts at each plane
and goes through the matrix in every possible path and saves the path if the total interval size exceeds
the previous. The path with the largest interval size should be the best. The algorithm is implemented
and fixed the problem seen in Figure 97. Even though the algorithm is O(n?) the number of planes in
an RItXPoint is usually small and this algorithm only has to be run periodically for every RltXPoint

rather than every iteration.

The problem is that this algorithm does not fully solve Rule 30 as the initial guess at the solving
algorithm is incorrect. It finds the best path if every plane is only passed through once. The true
solution would be to allow a plane to be used for multiple paths. This would mean that each plane can
be a comparison base to as many as all the other planes. This is identical to the traveling salesman
problem where the salesman can revisit any city. The brute force solution is O(n!) which is impractical
[Wiki09d]. Knowing the difficulty of solving the traveling salesman problem Rule 30 is left as only

partially implemented since it works well enough as is, and is left as future work.
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4.3.7.2 Roll back system

Figure 98 Before planes go missing Figure 99 After planes go missing

Figure 100 Plane 6 first seen

Figure 98 and Figure 99 show an interesting sequence in which some planes simply disappear as
the robot moves. The explanation is partially in Figure 100 as the left outside vertical plane, plane 6 is
first seen when the robot is in the lower right due to the large frustum. Note that this simulation does
not have any occlusion. There is nothing wrong with it having been seen early but it causes a large
error later on. The problem with the planes disappearing is due to the limited amount of plane storage.
At this point, the plane storage size is 1200. Ideally all planes in an RItXPoint are seen together so

even if the plane storage rolls over, all the planes that are relevant to each other roll over together.
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When some planes are viewed for a much longer duration, the planes that are necessary to compare to
other planes may be lost to a roll over. This is precisely what happened, as without plane 6, the top
planes could not be calculated since they are in the same RItXPoint. Also note that there is a question

that if a plane is only seen for a very brief time should it be added to an RItXPoint?

It is possible to chose a better order to do plane comparisons stated in Rule 30. It might also be
possible to save the best previous plane comparison as seen in the next section. But is there another
larger problem? Rule 7 states that in a RItXPoint all planes should be viewable together at the same
time. Perhaps the real problem is that plane 6 should not be in the first RItXPoint at all. This is similar
to the problem seen in Figure 94 and Figure 95 when its plane 6 comparison interval with plane 5 is too

small. The solution is to use Rule 31.

Rule 31:

All planes in an RItXPoint should be viewable together for a minimum amount of time.

The problem with implementing Rule 31 is that it could only be implemented in the future. When
a plane is first observed it is not possible to estimate what its interval will be in a RItXPoint. To detect
this situation Rule 32 can be used. The question is, how to ensure that the RItPlane is no longer in the
RItXPoint. Can the RItPlane just be unlinked from the RItXPoint and linked to another RItXPoint or
have a new RItXPoint created? Arbitrary unlinking the RItPlane could be dangerous and unpredictable
and can lead to many special cases. There is a much more elegant solution available in Rule 33 and
then the general Rule 34 which can be applied to any situation if required. Rule 34 is inspired by
[Mema09].

Details of how to implement Rule 33 are best left to the software architecture chapter. Suffice it
so say when it is found that a RItPlane should not belong to a RItXPoint, a hint is created that tells the

algorithm not to add a RltPlane with a certain first plane, at a certain iteration, to a certain RItXPoint.
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Rule 32:

After a specific number of iterations, verify that a RItPlane is recorded to have been
compared to its comparison plane for a minimum number of iterations. If not, ensure that
the RItPlane is no longer in that RItXPoint. If there is another RItXPoint available, first try
adding it to that one. If this rule repeats itself again for the same RItPlane then have a new
RItXPoint created. If this rule repeats itself one more time them simply do not place the
RItPlane into an RItXPoint which effectively removes it from the map.

Rule 33:

The algorithm must be able to roll back time from the current iteration to one in the past. All
RItPlanes should be rolled back to the iteration, and any extra structure that is created in the
meantime (RItXPoint) that should no longer exist should be removed. The algorithm will
also store all inputs for every iteration so that the algorithm is able to roll forward in time.

Rule 34:

If a situation occurs that is undesirable, the algorithm should be able to roll back time to the

point where the undesirable situation occurred and be able to send a hint to prevent that
situation from occurring.

The only draw backs to rolling back time are the processing time and running out of previous
planes inside of RltPlane. The rolling back part is quick but to go forwards again requires the complete
computation of all the intervals rolled back and can be somewhat intensive depending how many
iterations are rolled back. The other issue is that circular array in RItPlane that store raw plane data has

a finite limit of data and that limits how much time could safely be rolled back.

The rolling back and hint mechanism could be used for other purposes to improve the accuracy.
For example, in the situation where due to noise the key point is incorrect, it would be possible for the

correct one in the future to be sent to the past, in case any global mismatch problems occur.
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4.3.7.3 Save system

The other problem of Figure 98 and Figure 99 is the fact that the quantity of untransformed planes
stored in an RltPlane is a finite quantity. Previously in testing, any problems were solved by increasing

the storage. It would be ideal to have the best copy of the computed RltXPoint available.

Rule 35:

Save the best available computed RItXPoint from a single iteration in case it there is a
situation where it is no longer possible to compute the RItXPoint. In that case, simply load
the previous saved copy.

Rule 36:

Save the best available intermediate information for a RItXPoint computation when a plane
is compared to another plane. This rule is more complex than Rule 35 since it needs to
deal with the fact that there might be size mismatches since the best intermediate
information might be generated over different intervals.

Rule 35 saves a complete RItXPoint from a single iteration. This may not be the best available

information since any given iteration may have planes at less than the maximum size.

Rule 36 has the same functionality as Rule 35 but it is more complex to implement. It uses
intermediate values that could be more accurate but it also requires more storage and processing. Only

one of the two rules is required to be implemented. Both are currently implemented.
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4.3.7.4 Pseudo plane merging

Figure 101 A problem with intervals and plane 8,2

Filz: Edt Help

Figure 102 The problem with planes 8 and 2 fixed.
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Figure 101 shows an issue with plane 1 not being mapped properly and Figure 102 shows the
same simulation after the issue is fixed. The problem has to do with the bottom planes, plane 8 and
plane 2 are the same plane. When the motion model ends, the algorithm first searches for a previous
RItXPoint that contains all of the currently visible planes. Since after the turn, plane 8 is seen and not
plane 2, the algorithm incorrectly assigned which RItXPoint is the current one. When this happens all
of the untransformed planes are routed into plane 8. While plane 1 is updated in the correct RItXPoint
X0, in X0 when comparing plane 1 to plane 2, plane 2 does not exist in the interval where plane 1 is

bigger since all of plane 2's updates went to plane 8.

There are several solutions such as merging plane 8 and 2, which is not desired. Rule 30 could be
implemented to change the comparison order which would compare plane 1 to plane 3 (the rightmost
plane) and that would solve it. Turns out the best solution is a pseudo merge of just altering some of
the links. Rule 22 charts which RItXPoint should be the current one. To solve this problem Rule 37 is
used. When a loop is closed, it checks every viewed plane against all global matches. For these global
matches, if they do not contain a link to the original plane, a link is added that allows the charting. The
link is one way so the plane is not added to the RItXPoint which would cause it to be used when

comparing planes.

Rule 37:

After a motion model, compare any viewed plane to all of its global matches. If a global
matched plane does not contain a link to the RltPlane that means that there is a merging
issues and simply link the RItPlane to the RItXPoint, but not the RItXPoint to the RItPlane.
This prevents the RItXPoint from using it for processing. Now when charting, all RItXPoints
that would contain the plane if it is merged are correctly charted.
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4.3.8 Summary
The relative algorithm has some very good properties.
* It can make use of all available plane data.
* Itis possible to go back in time and correct errors.

* The processing is O(n) in number of planes and O(n) in number of iterations used for

processing. Only when reordering planes, there is a O(n?) function.

* Since the plane's relative angle is determined before a turn, even if the turn is noisy it will not

create any angular errors.
* It can identify and make use of planes that are growing and shrinking.

» Since the algorithm is not dependent on the past location (except for global matching) many

issues with algorithm that require very accurate current location do not occur.

The only requirements of this algorithm is that planes that are visible together can be grouped
together and that these groups can be linked together with shared planes. If this holds the algorithm

should work.
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4.4 Class Architecture

4.4.1 Introduction

Figure 103 and Figure 104 show the class listing of the Relative Plane algorithm and the

simulation. Each class is described in detail in the following sections.

RitXPointsS | <&® RitMapBuilder —® RtlMapBuilderUnitTest

Directly access most of

arent/child

RItPlanelnterval - RIitXPoint p—> RItXMMPoint

Rltinterval N

| RitPlane RItXPointRef | RItXPointChart

RItPlaneCompare

RItPlaneList

RItXPointLink

hint/roll back system
RItPlaneStorage RItPoset
RitTemporalHints | RitTemporalHint

Figure 103 Relative Algorithm class listing

CChildView RobotObject
S3DWindow PlaneManager
Camera PlaneObiject
UAxisDisplay Point3
ViewingFrustum

Profiler

Figure 104 Simulation class listing
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4.4.2 Simulation Classes

4.4.2.1 CChildView

The simulation is programmed in C++ under Windows using the Microsoft Foundation Class
(MFC) API. MFC is a wrapper around the Windows API which simplifies the development of a
project. For this project, the framework is custom, and MFC is only used for convenience as it is faster
to start a new project this way. In addition to the CChildView class, there are several other classes that
are created by the new project wizard which are not listed but they do not contain any project specific

functionality.

CChildView is important to the simulation as it is the class that drives it. The class is the parent
of the simulation and contains the thread which calls the simulation and then the rendering

functionality.

The class receives user input which is used to control the simulation such as stopping, starting,
and stepping through a single iteration. It also passes any non consumed user input to the rendering

window to let it receive user controls.

4.4.2.2 S3DWindow and the rendering subsystem

The S3DWindow class contains all of the 3D rendering framework. It creates the Direct3D
objects which are used for rendering, and has a rendering loop which calls the rendering function of
any class wanting to render to the screen. It also accepts user controls to change the view of the

window, and to toggle the display of the profiler.
The Camera class contains functionality to adjust the viewpoint given user input.

UAxisDisplay is used to display the axes in the corner of the screen which show the current view

orientation.

ViewingFrustum is used to cull polygons that are not visible to the robot. For rendering the
viewing frustum is built into the Direct3D pipeline and handled automatically. Since the simulation

wants to simulate the viewpoint of the robot it needs to do its own viewpoint culling.
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4.4.2.3 Robot Object

The robot object performs the actual simulation. First it moves the robot along a predesignated
path. It then calls PlaneManager and enumerates all of the planes in the map. It uses the frustum to
cull planes so only planes that are viewable are used. The used planes are then sent to the Relative

Plane algorithm that computes the map

4.4.2.4 PlaneManager, the map subsystem

PlaneManager contains a collection of PlaneObjects which stores the map of the simulation. The

class also has the code which creates the map.

The PlaneObject class is also used in the relative algorithm to store planes. It and the Point3

class are described in more detail when describing the classes of the relative planer SLAM algorithm.

4.4.2.5 Profiler

The profiler is used for performance reasons. It logs the time spent in each function and then

displays this time.
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4.4.3 Relative Algorithm Classes

4.4.3.1 RItXPointsS

RItXPointsS stands for RItXPoints storage. Its original purpose is to store RItXPoints but as the
project evolved from the four plane problem onwards it became the entry class of the algorithm. It is
involved with adding untransformed planes to the algorithm, managing RItXPoints and rolling back the
algorithm. Being the main class of the algorithm, it also maintains the count of the current iteration and
does maintenance at the start of every iteration. The interesting parts of this class are how this class is

used to store data.

Early on it is realized that an RltPlane can be linked to multiple RItXPoints. This does not lead to
a natural home to store the RltPlanes in the RItXPoints. If they are primarily stored in the RItXPoints,
there would need to be a function that traverses the RItXPoints and only returns each RltPlane once for
purposes such as matching. An easier way to do this is to store a master list that is used for such
purposes and the RItXPoints simply have a reference to the RItPlanes. This led to the RltPlanes being

stored in a vector inside of the RItXPointsS class, which made enumeration simple.

In addition to storing the master list of RItXPoints and RltPlanes, this class also stores a master
list of RItXPointLink. Each RItXPoint maintains a list of other RItXPoints they are linked to for
adjacency purposes. When building a map, the links have to be traversed, and a very similar issue to
having multiple references of RItPlanes occurs. It is possible to enumerate every link given a graph of
RItXPoints but it would take a stack and a complete traversal which is kind of a waste. Also when
linking together two RItXPoints, it would also be necessary to know the list of planes that link together
the RItXPoints. A better solution is to have the RItXPointLink class which stores information about
two RItXPoints that are linked together and the planes that link the two. This makes the enumerations
far simpler. An instance of a RItXPointLink is created when a new RItXPoint is created linking it to the
previous one. Then a linear traversal is used to enumerate the links to generate the map which is far

simpler than traversing a graph.
The key functions are:
* AddPlane, which adds a raw plane relative to the robots viewpoint to the algorithm.

* ManageXPoints, when there are new planes that cannot be matched against existing ones, it
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adds them to RItXPoints and creates new RItXPoints if necessary.

*  ComputeXPoints, the entry point function that computes the relative relationship between

RltPlanes.

e  RollBack, rolls back the simulation to a certain iteration and then rolls it forward to the current

iteration.

4.4.3.2 RItXPoint

The RItXPoint mostly functions as a container to its references of its RltPlanes. It has a list of the
RlItPlanes that are contained inside of it, and most of the processing deals with traversing this list and

calling RItPlane functionality.
The key functions are:

* Match/Add planes, traverses the RltPlane list to see if there are any matches. It also does
something similar to see if a new plane belongs in the RItXPoint by traversing the list and

seeing if the new plane is contained in all of the other plane's intervals.

*  ComputeXPoint, enumerates the list finding the relative offsets between pairs of planes and then
combining the relative offsets from pairs of planes together to form the offsets between all of
the planes. Note that the individual computation is handled by another class. There are two

other important functions:

o After the computation it checks each planes to see how many iterations are used when
forming the offset. After the RItPlane has been present in the RItXPoint for a certain
number of iterations, if the interval that it is calculated in is too small, a hint is created to

have the RItPlane not added to this RItXPoint and the algorithm is rolled back.

o If for whatever reason a previous calculation is better than a current one, the previous

one is used.

* Roll back functionality, the class has several functions that are necessary for the roll back

functionality.

* Pair reordering, periodically it can be checked if there is a more optimum pairing of planes to

generate the relative offsets.
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4.4.3.3 RItXMMPoint

RItXMMPoint is the motion model version of a RItXPoint. When the motion model first turns on,
an instance of RItXMMPoint is created. It is a subclass of RItXPoint and its interface is nearly the

same as RItXPoint.
The key function is:

* ComputeXPoint. This has the same function prototype as RItXPoint so it is called the same

way, but it only works on the single RltPlane that the RItXMMPoint has.

4.4.3.4 RItPlane

RltPlane primary purpose is to store and provide access to data. The data consists of a circular
array of PlaneObjects that contain the untransformed readings given by the robots viewpoint, and a list
of RItXPointRef which reference the offset of the plane from potentially multiple RItXPoint. The
RItXPointRef are computed in ComputeXPoint and used when building the map.

The key functions are:

*  Match/Add Plane, The class could be queried to see if the last matched plane matches up to a

given one, and then to add the raw plane to the storage.

* GetPlane, Gets a plane object (raw plane) at a given iteration. Originally the correct plane is
found using a linear search. However with it being linear in combination with the linear
processing of the plane comparison it made the algorithm O(n?). Instead a binary search is
used, which causes the first plane comparison to be O(nlogn). Since the planes are referenced
in order, after the binary search is used to find the first plane it is an O(1) enumeration.

*  GetRItXPointRef, The RltPlane may have several RItXPointRef since it can be linked to many
RItXPoints. This function returns the correct one given either a RItXPoint reference or an
iteration. The iteration version is used when requiring a key point for a given iteration to
calculate plane expansion.

*  Getlnterval, Returns the interval where there is plane data present by doing a full enumeration

of the plane storage.

* Roll back functionality, the class has several functions that are necessary for the roll back

functionality.
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4.4.3.5 RItXPointRef

Each time a RltPlane is bound to a RItXPoint, a new RItXPointRef is created. The RItXPointRef

contains data such as
* The position and rotation offset of the RItPlane to the RItXPoint.
* Areference to the RItXPoint.
* Aboolean value if it is valid or not.
* The interval at which it is computed.
* The key point index, 0, 1 or 2 which is not valid, left or right.
* The max length and height.

* The reserve reference which is used if the plane comparison cannot be calculated. It is an exact
copy that stores the previous best computed reference values. It can substituted for the
RItXPointRef if need be such as the RItPlane runs out of untransformed planes to compare to.
A second reserve reference is used to store the plane that it is compared to. This second
reference is used in case the plane that it is compared to is a different size in a previous

calculation which would mean that the offset needs to be adjusted for the change of size.

* Aboolean if the RltPlane has been confirmed to belonging to the RItXPoint for enough

iterations. This avoids rechecking the RItPlane once it is found to belong..
Most of the functions in the class are accessors. Functions that are not accessors are.

*  AdjustXRefSize which adjusts the size of the plane. This is used when the plane is smaller than
another version of itself so it has to be up sized for a comparison to be valid. It uses the key

point and the new size to do this.

* DoBackupCheck, The goal is to store the most valid comparison with the plane it is compared
to. This function does a comparison of the current plane size and then the stored reference to
see which length is the largest. It also checks the interval length if the size comparison is

similar.
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4.4.3.6 RItPlaneCompare

This class does much of the important work for the algorithm. It is the one that compares two
RlItPlanes and generates their relative offset and their key points. All the functionality in this class are
originally in RItPlane, but after a certain point it became large enough so that it was put into its own

class.

There is only one external function in this class: ComparePlanes that finds the best interval to

compare the two planes and then uses that interval to calculate the offset and the key point.

4.4.3.7 Rltinterval

This class stores an interval so it has only two member variables, start and end. It has four
operations that are self explanatory Size, Inlnterval, Mergelnterval (or operation), Shrink (and

operation).

4.4.3.8 RItPlanelnterval

Since it is possible a RItPlane to have more than one interval the RItPlanelnterval class stores
many RltIntervals. It is very similar to RltInterval except all operations occur over multiple intervals.

Its primary operations are Ininterval, AddInterval, Enumerate, GetMinimumlInterval, TotalSize.

4.4.3.9 RItXPointLink

This class is used to store a linking structure when two RItXPoints are linked together. It simply

contains accessors for its two RItXPoints and the vector of RItPlanes that link them together.

4.4.3.10 RItMapBuilderUnitTest

This class is used to test the initial algorithm to add RItXPoints. It is not necessary anymore, but

as a unit test it is kept around.

4.4.3.11RItMapBuilder

RltMapBuilder along with RItXPointsS are the top level classes. This class is responsible to build
a map by enumerating each RItXPointLink from RItXPointsS and to get the current location given the

last iterations raw plane readings. For global plane matching purposes, it is used by RltXPointsS to
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match raw planes by: obtaining the current location, offset an untransformed plane reading by this
location, and then seeing if it matches a plane on the global map. Also because it can detect when a

current location is not valid it is used to determine if a motion model should start.

4.4.3.12 PlaneObject

This class is used in both the simulation map generation and the relative algorithm. It stores raw
planes two different ways, first in terms of its plane equation and bounding box, and then in terms of

the four rendering points used to draw it.
Its key functions are:
* GenerateNoisyPosition which is used to create the noisy plane to enter into the algorithm.

* AdjustSize which is used to adjust a plane object to a new size given the new size and which

key point to base the expansion.

* GetKeyPoints, which first rotates the plane so that it is at 0° so it is completely on the x axis.

The left most top point is key point 1 and the right most top point is key point 2.

* CalculateOffset which computes the offset for two plane objects. Used in map builder when

comparing a raw plane to a global mapped one.
But by far the most important one is:

* MatchPlane. This function determines if and by how much two plane objects are matched
together. It is very important as the whole concept of the RltPlane is that a new plane belongs if

it matches to the last known plane.

4.4.3.13 Point3, Matrix

The Point3 class stores three float variables x,y and z, and contains a number of mathematical
operations that can be performed. The Matrix class is a 4x4 matrix use for transformation. The Point3

class can be multiplied by the Matrix class to transform the Point3.

4.4.3.14 RItXPointChart

The RItXPointChart is used in the calculation of the current RItXPoint. For every iteration, when
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an untransformed plane is added to a RltPlane, all the RItXPoint references of that RItPlane are charted.
During the ManageXPoint routine, the RItXPoint with the highest chart number is declared as the
current R1tXPoint.

4.4.3.15 RItTemporalHint

The RltTemporalHint class is a data structure that stores the hint type, and information on where
to apply it. That information is in the form of the untransformed plane object, iteration, and the index
of the RItXPoint not to add the plane to. Given this information, when rolling back time it is possible

to avoid adding a RltPlane to an RItXPoint.

4.4.3.16 RlItTemporalHints

This class stores instances of RltTemporalHint. It has functionality to add hints and retrieves
hints given an iteration. It also has some helpful functions CandddToXPoint and CanMakeNewXPoint
which search for a certain hint given a plane and iteration. This functionality is here rather than in

RItXPointsS.

The only tricky part of this class is that when adding a hint all other hints that are stored in the
future have to be removed since they might not be valid anymore. This can cause a roll back to cause

several other roll backs before the current state stabilizes.

4.4.3.17 RItPlaneStorage

This class stores all of the untransformed planes for each iteration. To store information for each
iteration, a circular array similar to RItPlane is used storing everything in a PlaneRecord structure.

This structure contains.
* A vector of PlaneObjects (all input planes for an iteration)

* A vector of RItPlane pointer as the unassigned list. Notice how convenient it is that the
RltPlanes have a master storage. Otherwise it would be difficult to keep track of when to delete

references.
* The current plane counter.

¢ The current RI1tXPoint index.
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* The current iteration.
* Three variables to do with storing motion model information.

It is interesting to know that these variables completely describe all non computed state variables

for a iteration.

Most other functionality in this class are accessors for the PlaneRecord circular array.

4.4.3.18 RItPoset

This contains three variables, position, rotation and valid. It is used in the RItMapBuilder to store

previous locations.

4.4.3.19 RItPlaneList

This class is very similar to the RItXPoint class. It is used for the unassigned plane list in
RItXPointsS. The unassigned plane list needs to remove RltPlanes that have an insufficient amount of
readings to be used. This extra function meant that RItPlanes would be internally stored as a list and
not a vector, since RItXPoint only has to remove RltPlanes during a rollback. A vector removal is more
expensive as the vector needs to be cleared and reloaded with all the RItPlanes except the one not
wanted. Due to this reason a new class is created that is very similar to RItXPoint. It contains the same

matching/adding functionality and the same enumeration functionality.
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4.5 One iteration of the algorithm

The previous sections: 4.1 Introduction describes the concept behind the algorithm, 4.3 The
Derivation describes the development and rules of the algorithm, and 4.4 Class Architecture describes
how the classes of the project are developed. Now lets put everything together to show how the
algorithm runs through a single iteration of receiving untransformed input from the robot to generating

the map.

Relative Plane Algorithm walk through

* The algorithm starts by calling RItXPointsS Startlteration which does some housekeeping such
as clearing the RItXPointChart for the start of the iteration.

* Then each plane that is visible is sent to the RItXPointS AddPlane.

RItXPointS AddPlane

o First each plane is saved into RltPlaneStorage for roll back purposes

© Then the plane is compared to every plane in the current RItXPoint by calling RItXPoint
MatchAddPlane.

RItXPoint MatchAddPlane

=  Enumerates each plane in the RItXPoint to find the greatest match by calling
RltPlane MatchTPlane.

RitPlane MatchTPlane

* Returns the value of PlaneObjects MatchPlane using the previous

iterations plane object compared to the input plane object

PlaneObjects MatchPlane algorithm.

* Takes the dot product of the two plane's normals and compares against a constant, returns false

if smaller than the constant. Rule 10

* Compares the planes d to a constant, returns false if larger than a constant.

* Compares the bounding boxes by looking at the 8 points on the bounding box plus the middle
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since there is a special case if one plane is very tall and the other very wide where they overlap
but do not have any of the corner points inside of the other bounding box (there still could be a
failure case even with the middle one and would require an edge check however this case is

unrealistic). The function compares each bounding box points against the other bounding box

min and max to see if it belongs. At least one point needs to return true.

One final check to make sure that they are only separated by a small number of iterations. It
would be possible to have an aliasing effect where one plane goes behind the robot view and a
new one appears that matches the old one. By checking the iteration this ensures that the new

plane would not be incorrectly assigned to the old one.

If at any time a check fails return -1. If it passes then form a combined score of the four

checks out of 100 in case more than one plane matches the best one can be selected.

= After the enumeration, if there is a good match call RItPlanes AddtoTPlane
to formally add the untransformed plane to the RItPlane and return true. If

there 1s no match then return false. Rule 1

RlitPlanes AddtoTPlane Rule 22

* In AddtoTPlane, in addition to adding the plane to the circular array: If it
is the first plane added to the RItPlane then save its starting location for
potential use when aligning the plane to the global map. Also call
RItXPointChart ChartXPoints which increments all RItXPoint references
connected to the RltPlane.

o If the current RItXPoint cannot match the plane then try any RItXPoints adjacent to the
current one. This is done by calling EnumXPConnection of the RI1tXPoint and using the

same match procedure as above.

o If there still is not a match search for a global match calling RItMapBuilder
MatchPlanetoMap.

RlitMapBuilder MatchPlanetoMap Rule 11

= Given a location from the previous iteration, transform the untransformed plane to
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global space and do a match with all known planes. If there is a good match return it.

There is also a version that returns all good matches for the loop closing pseudo merge.

o If there is a global match then add it to that RItPlane. In addition, add the RItPlane to a list
which stores RltPlanes that globally matched in an iteration. This is used later in

ManageXPoints.

o If there still is not a match, then see if the plane can be added to a RItPlane in the
unassigned list. If not create a new RltPlane with the raw plane and add a plane to the

unassigned list which is processed in ManageXPoints.

*  After all the planes have been added RItXPointS ManageXPoints is called that processes the

unassigned list, any global matches, and calculates the current RItXPoint

RItXPointS ManageXPoints Rule 7 Rule 32

©  Enumerate the unassigned RltPlane list looking for any RltPlanes that have more than the
minimum number of readings. Also check to see if there is a hint which say that this plane

should not be added to the map.

©  Check each enumerated RItPlane to see if it belongs to the current RItXPoint and make sure
there is not a hint which says it cannot be added to the RItXPoint. If it can be added then
add it.

o If it still cannot be added, enumerate the RItXPoint connection list to see if any adjacent
RItXPoint can accept the enumerated RItPlane, that does not have a hint saying it cannot be

added.
o Ifit still cannot be added then make a new RItXPoint calling the function MakeNewXPoint

RItXPoint MakeNewXPoint

= Do some basic variable setups then call TraverseloLink

RItXPointsS TraverseToLink Rule 12

* Do a complete traversal of all of the RItXPoint starting a the current one. This
requires a stack and a boolean flag in each RItXPoint so each RItXPoint is only

visited once.
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¢ For each RItXPoint call LinkToNewXPoint

RItXPointsS LinkToNewXPoint Rule 8 Rule 9

© Enumerate each RItPlane in the RItXPoint that we are looking to link to.

o First check if the enumerated RltPlane is in the same interval as the RltPlane that

is the one that triggers the new RItXPoint.

o Ifitis, since we are only looking for two linking RItPlanes compare the distance

and the starting iteration to see if it should be used rather than other RltPlanes

o If there are two good linking planes then add them to the new RItXPoint and

return true, otherwise return false.

* Assoon as LinktoNewXPoint returns true, return with the reference of the linking

RItXPoint and the two planes to link to

* Ifwe are in a motion model this is a special case where only one plane will match,

since only one plane is previously viewable. Rule 29

¢ Make the connection between the new RItXPoint and the one that is returned from

LinktoNewXPoint.

©  Now enumerate the global match list to look for any planes that matched to a global

reference to see if they should be added to a known RItXPoint.

o Call CheckForLoopClosing which is used to do a pseudo merge. When a loop is closed
there could be two planes on the map that are the same. If there are two instances of the
same plane, then only the one used will get charted so the normal get current RI1tXPoint
might not be accurate. This function checks for that case so the current RItXPoint is the

proper one.

RItXPointsS CheckForLoopClosing Rule 37

=  Enumerate all planes seen this iteration.
=  Match each enumerated plane to the global match receiving a list of all global matches.

= Store the count of each plane match for every RItXPoint seen.
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= After the enumeration, if there is an RItXPoint that is linked to every plane make that
the current one. Also end the motion model if there is one, and call

MendMergeAfterLoopClosing.

RItXPointsS MendMergeAfterLoopClosing

* This is nearly identical to CheckForLoopClosing though this time if it is found that
there is plane that should be charting an RItXPoint but is not, add a one way link for
charting purposes. The link is one way so it does not effect ComputeXPoint..

o If CheckForLoopClosing returns false then check if the RItPlane can be linked to the current
RItXPoint, and then to the adjacent RItXPoint.

o If there still is not a match then make a new RItXPoint as long there are less than a certain

amount of RItXPoint links for the RItPlane. Rule 29

o Clear the global list and do some maintenance on the unassigned list since the plane should

only be kept there for a certain amount of time after they are visible.
© Calculate the current RItXPoint by calling the RItXPointChart GetBestXPoint

RItXPointChart GetBestXPoint Rule 22

= Return the RItXPoint index of the RItXPoint with the most RItPlanes charted to it this

iteration. If there is a tie with last iterations RItXPoint then use the previous one.

© Add the unassigned list, plane counter,and current RItXPoint to the plane storage for use for

roll backs.

* Now call RItXPointsS ComputeXPoint that generates the relative offsets of all the planes in an
RItXPoint.

RItXPointsS ComputeXPoint

o [terate through every RltXPoint and call its ComputeXPoint function.

RItXPoint ComputeXPoint

= Check if any of the RltPlanes in the RItXPoint have new observations. If not do not

continue in this function since there is no computation to perform.
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m  Call ReorderPlanes after a certain amount of time from the creation of the RItXPoint

RItXPoint ReorderPlanes Rule 30

* For each RltPlane in the RItXPoint create an n by n matrix storing the results of the
ComparePlanes interval size. If there is not a valid key point between a pair of

planes store the result as negative one so the pairing is not used.

*  Check each possible path through the matrix without allowing for multiple visits to a

RlItPlane to calculate the path with the highest total interval count.
* Use the best calculated path to adjust the pairing of planes for comparisons.
» Ifusing new pairings clear any saved previous pairings.
=  Enumerate through every RltPlane in the RItXPoint and compare planes in pairs.

= Set the RItXPointRef valid member to false of the second plane in the comparison (the

first is the reference) and call RItPlaneCompare ComparePlanes

RltPlaneCompare ComparePlanes

* Calls GetCombinedInterval to get the combined interval of the two planes

RitPlaneCompare GetCombinedlInterval

o Gets each of the intervals of the two RItPlanes and then return the value of

RltPlanelnterval GetMinimumlinterval using both those intervals.

RltPlanelnterval GetMinimumlinterval.

= Do anested enumeration of both of the two intervals given. When one
interval is in the other, take the smallest combination and add it to the return

RltPlanelnterval.

* Then call GetMaxSize that gets the best interval available out of the ones returned by

GetMinimumlInterval

RItPlaneCompare GetMaxSize Rule 18

o  Enumerate the combined interval
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© QGet the raw plane for each iteration of the interval to get its max length.
o Place the max length into a moving average for noise reasons.

o Detect if the moving average is increasing or decreasing, If it has been noted as
increasing and then decreasing or vice versa then split the interval. There is

some hysteresis in the detection for noise reasons.

o For each interval store the one with the greatest total size of both planes as the

best one.

©  When generating key points this function could be forced to return a certain
interval. If it is forced and the current interval is the one to be returned then do

that.
» Ifthe interval size is 0 then exit and at which point the RItXPointRef to not valid.

* Otherwise enumerate the interval. For each iteration get the raw planes and then the
two key points of each of the two planes to give four points. Rotate these four points
so that the first plane has an angle of 0°. Each of the four points generates four
midpoints given each planes maximum size in the calculation interval. Compare
these four mid points to get four offsets. The ordering is consistent over time since
the key point have a ordering convention, so store the four results in an array.

Rule 3 Rule 14

» After the interval enumeration take the standard deviation of the array which is the

size of the interval length by four. Rule 13

* Do acheck to see if the there is a specific two standard deviations that are lowest
and close in size. If this is the case the key points cannot be found. Otherwise use
the standard deviation that is the is lowest to figure out the offset and the key points.

Fill in the R1tXPointRef information and return Rule 15

= Call CheckintervalSize which checks if the RItPlane has enough iterations to be consider

in the R1tXPoint.

RItXPoint ChecklntervalSize Rule 31 Rule 32
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Check a boolean in the RItXPointRef to see if we have confirmed if we belong to the
RItXPoint yet so we do not have to repeat the processing. Return if we already

confirmed this RlItPlane.

Check if the interval the RItPlanes RltXPointRef is calculated in is larger than a

certain size, if it is this set the check to true and exit.

If it is not, then check the starting iteration of the RI1tXPointRef and subtract it from
the current iteration. If we are below the minimum just exit for now since we cannot

make a judgment.

If we are above the minimum then the RltPlane should not belong to this RItXPoint.
Create a RltTemporalHint. This hint should either be a hint that says that the
RltPlane should not be added to the RItXPoint it is currently in, or if the RltPlane
has been already used to create a new RItXPoint it should not be added to any
RItXPoint which means it is not included in the map. Then add the hint to the

RltTemporalHints.

Call RItXPointsS SetRollBackTo to have the algorithm roll back time to when the
RltPlane is first added to the RItXPoint so that the hint can be used. Rule 34

After ComparePlanes check if the key point is valid. If not call

CalculateMissingKeyPoints.

RItXPoint CalculateMissingKeyPoints

Go through every RltPlane in the RItXPoint except the one that is missing the key
point and call RItPlaneCompare ComparePlanes using dummy RItXPointRef
variables, and forcing the ComparePlanes to use the current interval. If there is a

valid key point then load that into the actual RItXPointRef.

Call the RItXPointRefs DoBackupCheck to see if we have the best available calculated

offset or there is a better one stored in the RItXPointRef variable.

RItXPointRefs DoBackupCheck Rule 35 Rule 36

Check the maximum size of the current reference and the previous best one. If the

previous best one is better, then copy it over to the current reference. Otherwise
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copy the current reference over the previous best one.

* If we are loading the previous reference, then change the return value of the base
RItXPointRef that when the function is called it has the current information of the
the plane that this one is compared to. Change it to the one used when the previous
best referenced is backed up. This is important as there could be a difference of
plane size of the comparison plane which has to be adjusted for when grouping

together all of the offsets.

= After we have processed all of the plane comparisons for the RItXPoint, chain together
the individual comparisons by taking the result of one and use that as the new offset
reference for the next one. There may be a size difference when the results are chained
together. Say plane 1 compares against plane 2, then plane 2 compares against plane 3.
If the two references of plane 2 are not the same size there needs to be an adjustment to

the offset to account for this. Rule 2 Rule 28

= At this point everything is in the space of the first plane which is at the origin point. For
rendering purposes only it is better if the RItXPoint is in the middle of all its planes it is
compared to (makes no difference for map building). So take the center of all the planes

and offset the planes so that the RItXPoint is in the midpoint of all the planes.
= RItXMMPoint ComputeXPoint is called instead for motion model R1tXPoints

RItXMMPoint ComputeXPoint Rule 24 Rule 25

* The RItXMMPoint takes a look at the reference of the previous RItXPoint (in
ComputeXPointOffset) to the one seen plane and compares it to the location of the
RItXMMPoint. It computes the relative offset of the RItXMMPoint to its one
RltPlane. This relative offset will be held static and is used to generate the location

of the robot given a raw plane.

* [terate through every raw plane. Use the point to plane distance equation to
determine the x distance. Use the cumulative angular difference with the x distance

to compute the z distance.

e If we know the location of the robot, we know where an iterations plane is compared

to the stored plane reference derived from the previous RltXPoint. If the plane
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happens to be bigger expand the reference of the RItPlane to account for the bigger
size (in ExpandPoints). Rule 23

* Now call RltMapBuilder BuildMap to generate the map.

RltMapBuilder BuildMap

@)

Each RItXPointLink is enumerated Rule 6

The first one is a special case and is marked as such. In this case the RltPlane is compared
against the first instance of its plane object which is used to align the computed map to the
actual global map. For this special case there is another special case when the first instance
of the plane object is no longer stored since the RItPlane storage rolled over. This is
handled by having the RltPlane store information from a time where the first offset is

calculated. Rule 4

If the RItXPointLink linking RItXPoint is the motion model version, it contains the global

location already so use that.

For every other case look at the link structures RItPlanes which link the two R1tXPoints.
Get the two RItXPointRefs from the RItPlane for each of the RItXPoints. If the reference

have different sizes then expand the one that is smaller using the key point. Rule 17

Use the two references to figure out the offset from one RItXPoint to another. There are two
RltPlanes normally and one if the base reference is a motion model. Average the offset and

add it the current total global location. This is the global location of the linked RItXPoint.

Enumerate each plane in the linking RItXPoint and its RItXPointRef variable. Transform
the information in the RItXPointRef using the global location of the RItXPoint. If that plane
is not mapped yet then add it to the map. If it is currently mapped then replace the previous

plane on the map only if it is larger than the previous on.

* Now call RItMapBuilder GetPoset to get the current location

RltMapBuilder GetPoset

o

o

Get every raw plane/RItPlane pair that is available at the current iteration.

The RltPlane index matches up with the corresponding plane on the global map. However
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it might not be the same size since the global map will always have the largest known size.

o If the size is different then we could expand the raw plane only if the RItPlane has a key
point that is generate in the same interval as the current iteration. If it does, add the plane to

a good list. If it does not add it to a bad list. Rule 16

o Take a look at the bad list to see if it is possible to generate a key point using one of the
known planes on the good list. If it is we could then expand the plane accordingly and then

add it to the good list. Rule 19

o If a bad plane cannot get a good key point using the good plane list then try the same key

point generation using the bad plane list.
o Ifit still does not have a valid key point then we cannot use it.

o For all good planes, match them against the global mapped version by calling PlaneObjects
CalculateOffset. Rule 5

PlaneObijects CalculateOffset.

= Compare the two plane's normal to figure out the rotation difference. Then use that
difference to rotate the second plane by the negative of that amount and then subtract the

two midpoints to get the position offset.
o Take the average of all the locations to get the current location.

© At this point if there are no good planes to get the location, check to see if we should be in a

motion model by calling CheckForMotionModel
RltMapBuilder CheckForMotionModel
= [f we have no good planes, increment a counter.

m  [f the counter is over a certain amount and the start of the count occurred less than a
certain number of iterations then we should have a motion model occurrence. Call

RItXPointsS CreateMotionModelXPoint Rule 26

RItXPointsS CreateMotionModelXPoint

*  Get the location of the last known location. This is the global position of the
RItXMMPoint. Rule 27
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* Link the RItXMMPoint with the previous RltXPoint and load in the one linking

RItPlane reference.
= [f the start of the count is higher than a certain amount reset the counter.

*  Now call RItXPointsS RollBack to check if we have to roll back the algorithm due to a hint.

RItXPointsS RollBack Rule 33

o If a function requested a roll back it calls a function to tell RItXPointsS the iteration it wants

the algorithm to be rolled back to. If there is not a roll back request, then exit the function.
©  Go through every RltPlane stored in the master list. Call the RltPlane RollBackTo.

RltPlane RollBackTo

= Find the plane at or before the given roll back iteration using the GetPlane, which does a
binary search of the circular array looking for the iteration. If the roll back would cause
the RltPlane to have no plane object left then return false. If true simply change the
write index to the new iteration. Check every RltXPoint the RltPlane is linked to, to see
if it still belongs. If it does not then remove it from the RItXPoint and remove the local

reference.

© Add RltPlanes that still exist to a good list. Add ones that should not, to a bad list to be
deleted later.

© Go through every RItXPoint in the master list. Ifits creation iteration is greater than the roll
back then add that R1tXPoint to a removal list. Also have it remove any two way references

to any RltPlane that it is linked to. Otherwise add it to a good list.

©  @Go through every RltXPointLink and if either of its links contain a RItXPoint that is on the
delete list then add the RItXPointLink to the delete list. Otherwise add the RItXPointLink to
a good list.

o Since all the master lists are stored as vectors, clear those vectors and add any objects that
are in the good list back to the master list. Any objects in the to delete list should be deleted

to clear the memory.

o Call RItXPointsS ComputeXPoints and RltMapBuilder BuildMap to reset all of the
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computed structure. Load additional information from the PlaneStorage such as the

unassigned list.

o Now iterate for every iteration from the roll back iteration to the previous current one. First
calling Startlteration, then AddPlane for every plane object stored in the PlaneStorage for
each iteration. Then ManageXPoints, ComputeXPoints, RltMapBuilder BuildMap and then
GetPoset.

141



4.6 Closing Remarks

4.6.1 Potential issues

One issue not discussed so far is what happens if the noise model is not flat. What if the noise
increases with the distance of objects. This situation is not neglected because it is a problem, rather it is
not a problem at all. The reason other SLAM algorithms prioritize closer objects due to lower variance
(but still the same mean) is because it would create larger short term errors in global location using
objects farther in distance. In those algorithms, if there is a large enough error the algorithm could lose

tracking and get lost.

This algorithm does not rely on the global location so any large short term errors do not matter.
As long as the plane maintains the same mean regardless of any extra noise due to distance it should
work. If for whatever reason the extra noise does cause issues there is a very simply solution. When
choosing the interval used to calculate the plane comparison, the plane distance to the robot can be used

to choose the interval that is closer.

This algorithm does not consider planes that move dynamically. There is a solution to this. If a
plane has large standard of deviations in all its key points perhaps it could be removed from any
calculation. This would require multiple comparisons to figure out which planes in the comparisons

are static and which are dynamic.

Another issue not discussed is what happens when the RltPlane MatchPlane fails due to large
short term noise. As it turns out this is not a big issue. The worse case scenario is that there is a run of
noisy planes in one direction causing the last entered plane to be well off from its true position. In the
next iteration lets say the untransformed plane is accurate but too far from the previous untransformed
one to be matched correctly. In this case the global match will pick it up and match it into the correct

RltPlane.

4.6.2 Related work

This algorithm is conceived from the unsuccessful previous algorithms described in this thesis.
After its completion it is noted that many of the underlying concepts are seen in other papers. Several

papers having some of the underlying concepts but none have all of them together. Mei et al
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[MSCNO9] uses the concept of relative space to register the output of stereo cameras. Newman
[Newm99] stores landmarks in terms of relative position and has an algorithm to constrain the
landmarks since there might be multiple links to each landmarks causing different global locations.
Csorba [Csor97] is perhaps the closest to this work, as it links point based landmarks using a third point
for relative angles. Lu et al [LuMi97] does scan matching between frames and stores all of the scans so
that they could be combined to minimize error. The concept of subdividing space for calculation

purposes is common and previously referenced in this thesis as [LMSKO03] [Fres07] [PiTa08].
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Chapter 5 EM in combination with the Relative Plane

Algorithm

5.1 Introduction

For verification, it is important that the Relative Plane algorithm is tested using the results of the
EM simulation. There are some differences in the simulation used in the previous chapter and the EM
simulation. The EM algorithm works on points that are occluded so it is not possible to see through

walls.

In the previous chapter's simulation, the planes growing and shrinking is based on the planes
intersection with the frustum. In the EM algorithm, the planes growing and shrinking is based on the
visibility of points in a plane. This means that a plane grows and shrinks in discrete steps as new points
are seen and past ones leave. In the previous chapter's simulation, the growing and shrinking is

continuous.

The past EM simulation in 3.5 uses a plug in architecture which has advantages and
disadvantages. For a programming team with multiple people, a plug in architecture allows the work to
be developed separately with a common interface to allow for interoperability. It requires that each
programmer have only the code they are developing themselves which allow for lower compilation
time. A disadvantage is the extra work to load the plug in. For medium sized programs, like the
simulator used, the compilation time is small compared to the extra work. A larger problem is that
when debugging, it is only possible to either change the code in the simulation or for a single plug in at
any given time. With multiple plug ins, if debugging, it is not possible to change the code in both of

the plug ins at the same time.

For these reasons, it is decided it would take less time to make a new simulation that would
contain code from the old EM simulation without using the plug in architecture. The amount of time

copying and pasting the code is minimal and it did save time later on.

This chapter shows the results of running the algorithm in the full simulation of generating points,
running the EM algorithm to generate planes, and then using those planes as input for the Relative

Plane algorithm.
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5.2 Results
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Figure 105 and Figure 106 show the results of a simulation with many planes but a small frustum
and Figure 107 and Figure 108 show the results of a large frustum testing the motion model. The maps
are identical to the ones used in the previous chapter's simulations. The only differences is that the
planes are create out of points and each point has an independent amount of noise generated for it

rather than having the noise generated for each plane itself.

In all those figures, the top left window shows the actual map in comparison to the generated
map. The top right window shows the points currently visible to the robot. The bottom left shows the
planes the EM algorithm generate in comparison to the planes viewed by the robot at the time. The
bottom right show the results of the relative algorithm by itself, along with the RItXPoints connectivity

and plane numbering.

Figure 105 does not have any noise in it and it does appear to generate the map correctly.
However there is a slight amount of error in the map. The error happened as the robot was turning and
is similar to the issue in Figure 89. When the robot turned, due to the viewing frustum being longer in
the sides than the center, some planes were seen for a brief period of time. This caused the function
which splits an interval when a plane is growing or shrinking to not have enough iterations to correctly
identify when the interval should have been split. The last two untransformed planes seen should have
been split to a second interval but were not. When doing the plane comparisons, the standard deviation
was wrong so the wrong key points were selected. A possible solution is tested that changes the
amount of planes for the moving average calculation and allowing the interval split to happen when it
should occur. Although this solves the problem, it would have an adverse effect when working with

noisy data. A better solution to this issue would involve a better RI1tXPoint reordering algorithm.

Figure 107 contains no noise and generates a visually perfect map. Figure 108 contains noise and
looks similar to the results generated by the previous simpler simulation. The error is most likely due

to planes over expanding during a turn when the motion model is on.

Overall the Relative Plane algorithm is shown to work as intended that while not completely

accurate, it still produces good results.
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5.3 Recommendations for future work

1. Adding a caching system to store in between calculations. The bottlenecks of the Relative
algorithm is in calculating the interval in which to compare two planes and to calculate the
position offsets of the four key point pairs and then compute the standard deviation. In these
calculations, most of of the computation is identical to the iteration before it except for the new
information. It should be possible to save the previous computation and simply add the new
information and recompute the sums. The implementation is somewhat more tricky than it first
appears as the cache system should be able to recall in between calculations based on pairs of
planes and a given iteration, and operate with the roll back system. If necessary, this system

should discard the last used cached information to free up memory.

2. Currently, only movement in the x and z axis is allowed and only rotation in the y axis is
allowed. It should be possible to allow for full 6 degree of freedom movement. In order to do
this four corner points per plane have to been used which would mean 16 comparisons. To
make this four times increase of computation feasible the caching system should be

implemented first.

3. Currently the RItXPoint RItPlane comparison ordering algorithm is only partially implemented
since fully implementing it using a brute force method would require an O(n!) algorithm. It
might be possible to arrive at a good enough algorithm that is computationally faster and more
accurate than the O(n?) currently used. One possible solution is to sort each RltPlane according
to its seen interval using an O(nlogn) sorting algorithm. Then the pairs can be chosen based on
adjacent matches and if they are not parallel to each other. It should be possible to use this
system to better choose which planes belong in each RItXPoint or better yet when an RItXPoint
should be created. This can be done in hindsight coupled with the rollback system.
Implementing a RItXPoint selection algorithm that works on past data could improve the map
significantly, and reduce the interval problem. This might also eliminate the small error seen in
Figure 105.

4. The original intention of this thesis is to use actual point data from a vision algorithm or a laser
scanner. It is realized that those two sensors may work depending on the environment, however
in an area with a low density of features, say a long hallway, it might be required to have a

vision algorithm that can directly find regions/planes of interest, say a poster on a wall. In fact
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any object should be able to be classified as a plane or a bounding box. This algorithm should

work with any vision system that is able to classify an object consistently.

. Adapt this algorithm to use in dynamic environments. This would require identifying objects
with a higher standard deviation in key points comparisons and then classify them as dynamic.
Because dynamic objects may move together a requirement would be to do multiple plane
comparisons to identify them. This can lead to a worst case scenario that it is not possible to
identify what is dynamic and what is static. In this case the vision system would have to

classify objects.
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5.4 Summary

It is not possible to directly compare the results to another algorithm such as the EKF or
FastSLAM due to the uniqueness of this problem in terms of identifying planes that grow and shrink.
In addition, to test this algorithm on real data, it is required to either have a vision system that is able to
segment planes, or a point data set that has consistency in terms of allowing the EM algorithm to
segment planes from it. Also, the current implementation only works on 22D which may be

insufficient using real data.

After the completion of the implementation of the Relative Plane algorithm there was an
interesting observation. The goal of the Relative Plane algorithm is to accurately map a planar
environment and to do this it is required to identify planes that are growing and shrinking. The
Relative Plane algorithm both is able to filter out noise and identify dynamic edges of planes. The
dynamic edge detection comes at a small computation cost and is inherent in the architecture of the
algorithm.

It became evident that if the Relative Plane algorithm can both handle noise and a type of
dynamic movement perhaps it can do something similar using points as the input. Chapter 6 The
Relative Point Algorithm uses the Relative Plane algorithm as a template to implement a Relative
algorithm using points. Since points are used, it can be directly compared against a six degrees of

freedom (6D) no odometry EKF.

It is interesting to note that the Relative Point algorithm architecture benefits from the knowledge
gained by implementing the Relative Plane algorithm. Most of the recommendations of the future
work of the Relative Plane algorithm is directly designed into the architecture of the Relative Point

algorithm.
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Chapter 6 The Relative Point Algorithm

6.1 Introduction

The relative point algorithm is based on the Relative Plane algorithm that was originally
implemented first. The main principle of both algorithms is that landmarks, be it points or planes are
stored in their untransformed state. Most of the processing occurs using the relative positions of the
untransformed landmarks. The untransformed landmarks are used to match subsequent observations of
the same landmarks avoiding the use of current position. Landmarks that are observed together in the
same time interval are placed into groups. In these groups, the relative locations of landmarks is
computed by using the stored untransformed landmarks in the time interval where the landmarks are
observed together. For each iteration before any comparisons can occur, the untransformed landmarks
are transformed with a matrix for rotation and translation invariance. To maintain the invariance it is
required to use three points or one plane as a basis. The difference of a landmark's position is then
consistent regardless of the robot's viewpoint, and can be averaged from all the untransformed
observations to obtain an accurate relative position inside of a group of landmarks.

To form a map from the relative position of many groups, each group's relative map is combined
together. This is done by comparing landmarks that are present in more than one group. To align the
map to the actual map, the observations seen at the first iteration are assumed to place the robot at the
starting position of (0,0).

Notice that there is no mention of current position so far. In this algorithm, current position is not
used as a state variable that is updated cumulatively every iteration. Instead it is generated by
comparing the current observations of landmarks to the global map that is generated. Other than
display purposes, current position is only used when a landmark has not been matched against a
previous untransformed observation and is already present on the map. This occurs when backtracking
or closing the loop.

When the initial untransformed matching fails, a landmark is transformed to global coordinates
using the current position and compared to the global map. If this still fails to find a match then it is
assumed to be a new landmark. In a sense, all the global matching is doing, is using the previously
known relative relationship between landmarks and the last iteration's observations. Although when

closing a loop global matching is still dependent on the overall accuracy of the map, backtracking is
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local and is invariant to global mapping errors.

The Relative Plane algorithm has additional responsibilities to identify if a plane is growing or
shrinking. This is done by comparing the standard deviation of corner points over time to identify
which ones are changing. Similarly the Relative Point algorithm has functionality to determine if any
points are moving independently of the viewpoint and it decides whether or not to use them for
mapping purposes.

The Relative Plane algorithm is developed for use in a 2}42D simulation. The Relative Point
algorithm is full 6D. It is able to distinguish both movement and rotation in all three dimensions. One
of the main implementation differences, is that the plane version needs to identify planes that grow and
shrink in different intervals. This identification requires splitting up the intervals used to calculate the
relative positions. The interval splitting greatly increases the complexity of the algorithm. In the point
version, either the point is visible or it is not. Rather than use pair wise comparisons as in the planar
version, the point version uses three points as the basis for rotational invariance for the entire group.
The planar version uses a formal linking of groups to generate the global map. The point version
instead processes the groups in order of time first created and uses the Iterative Closest Point (ICP)
algorithm to link together any points that have already been mapped from any other group. The point
version is simpler than the plane version of the relative algorithm and this is reflected in the smaller

sections to describe it in this chapter. The following sections make up this chapter:

* 6.2 Registering Points: describes the processes to store the untransformed points and match
them to the following iteration observations.

* 6.3 Map Creation: describes the process of creating a map given that the points have already
been organized into groups.

* 6.4 Group Creation: describes the process of decided which points should be formed into a
group.

* 6.5 Other Functionality: describes the rest of the functionality of the algorithm such as: Global
point matching, RItPoint merging, Dynamic point detection, Basis point optimizing, and Group

optimizations.

Following the description of the algorithm, section 6.6 examines the properties of the algorithm.

* Section 6.6.1 looks into the main issue of accuracy performance in this algorithm, as well as
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how to improve the group selection. This section also compares different group creation
constants versus the total landmark error.

* Section 6.6.2 examines the run time efficiency of the algorithm over both a long simulation run
and with simulations varying the amount of points.

Section 6.6.1 looks at the algorithms accuracy with different constants for the group creation but
there still is a question of how accurate this algorithm is, given that there is an unknown theoretical
maximum accuracy given the noise in the data. To verify that the relative algorithm is reasonably
accurate it is compared against a 6D EKF Slam algorithm that does not use odometry in section 6.7.

There is an additional accuracy comparison in subsection 6.9, Forty loops through the figure
eight, where the error is evaluated after many runs through the same simulation. The section
undertakes the question, as the quantity of iterations increases, does the error go towards zero?

Section 6.10 Comparison of the two relative algorithms, compares the relative point algorithm to
the relative plane algorithm and notes the improvement. The relative point algorithm completes much
of the relative plane's algorithm future work.

This chapter's conclusion is section 6.11.
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6.2 Registering Points

At the start of every iteration the untransformed points as seen from the robot's viewpoint are
matched to previously mapped points. Most algorithms use current position to transform points into
their global positions and these are compared against globally matched points. Instead, this algorithm
stores the previous iteration's untransformed points and uses those to do the matching.

Several (object oriented) classes are used to perform this operation: RltPointCharting,

OVLPQuadTree, RItPoint, and Point.

6.2.1 Point

This class represents a single point in a single iteration. It stores a location (X,y,z) and the
iteration it is observed in. Point contains a function to compare a point to another point to see how
close it is. The comparison function compares two points distances versus a maximum bound constant
and returns a number from 100 to -1 representing how close the match is. The comparison function
can use the point's iterations so that there is a maximum allowed difference between their iterations for

a positive match. Point also contains several utility functions for rendering.

6.2.2 RItPoint

A point that is on a map consists of many observations of a point seen in different iterations. The
RltPoint class contains many observations (iterations) of the point stored in a circular array. Its main
functionality involves a quick enumeration given a time interval. Since a point may be observed in
several time intervals and may be missing in iterations inside of those intervals the enumeration
requires a bit of logic. The enumeration consists of a O(logn) binary search to find the first iteration to
enumerate and then a O(1) enumeration using the first iteration as a starting point. The RItPoint also
contains: links to RItGroups described later, its globally mapped location, several boolean flags of its

status and the interval range where it has been observed that is used for group creation.

6.2.3 RItPointCharting

Every point seen in an iteration is either added to a preexisting RItPoint or made into a new

RltPoint. After the RItPoint has either been identified or created, a references is added to
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RItPointCharting for the given iteration. This class stores every RltPoint that has been observed for
each iteration. It uses a vector of RItPoint references for every iteration, and a circular array to store
the vectors.

The Relative Point algorithm contains a single instance of RItPointCharting that is used to add
RItPoints and to enumerate RItPoint from. For point matching, at the start of every iteration
RItPointCharting is asked to generate a list of all points seen in the previous iteration(s). In addition to
simply enumerating the last iteration's vector it can also enumerate over a range of iterations. This is
useful since a point may be missing in several iterations in an interval. If only one iteration is returned
that point may be missing. There is a limit of how many iterations can be used to look back, since the
distance between untransformed points may be too great after a few iteration for a match. Global
matching will be described later that matches points that have not been seen for a while.

It is important for computational efficiency reasons for the enumeration over several iterations
not to return any duplicates. It is likely that each iteration contains nearly the same RltPoints so not
removing duplicates would increase the matching processing cost. To do the enumeration as efficiently
as possible, a hash table is used to store RltPoint's indexes. When a RltPoint is first enumerated it is
added to the hash table that is then referenced for each subsequent RltPoint. Regardless of which
iteration the RItPoint is found, the most recent untransformed point in it is the one used for point
matching, not the untransformed point from the iteration the RItPoint is found in. Since the hash table
duplicate check can be considered O(1) the creation of the enumeration list can then be considered
being O(n,I) where I is the number of iterations checked. nsis a subdivision of the total points on the
map, which is the average amount of points visible in a given iteration. The point matching uses a
small I of only a few iterations so it can be considered an O(n;) algorithm.

The RltPointCharting enumeration is used in several other places. When generating the current
position it is used to enumerate each point seen in the current iteration to compare against their globally
mapped locations. When creating groups, given an ungrouped point, it is used to enumerate points
before and after the iteration where the ungrouped point is first seen to obtain points can be grouped

with this point. It also used by the log to track how many points are seen in each iteration.

6.2.4 OVLPQuadTree

OVLPQuadTree stands for Overlapping Quadtree. A quadtree is a data structure [Wikilla]
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which spatially divides a location into cells, each of which is a subdivision of the total amount of space.
When doing point comparisons it is more efficient to compare against a small spatial area rather than
against the entire area. If n points are to be compared against n previous points, the algorithm would be
O(n?). The quadtree can reduce this comparison to approximately O(nlogn).

The overlapping quadtree is a variant of a normal quadtree in which each cell overlaps
neighbouring cells. If the cell's overlap is the same as the maximum bounding distance used for the
point comparison, only one cell needs to be checked to guarantee all of the possible matching points are
queried. This is more efficient than checking neighbouring cells since points in the neighbouring cells
may not be within the matching bounds. The additional cost to create the overlapping structure is that
when adding a point to the quadtree, it is added to the bin it matches without the overlap and then the

point is checked against each neighbouring bin with their overlaps to see if it belongs in those bins.

6.2.5 The point matching

In the start of each iteration, the RItPointCharting structure is used to generate a list of all RItPoint
in a given iteration range. This interval is only a few iterations in the past and given the duplicate
detection with the hash table it can be considered an O(n;) operation. The list is then enumerated and

added to the OVLPQuadTree which is also O(ny).

Each point that is seen in the current iteration is first compared against the OVLPQuadTree to see
if it matches with any preexisting RItPoints and if so it is added to that RItPoint. If the point does not
have a match after the OVLPQuadTree comparison, it is then checked against global matching
described later. If the point still does not have any matches a new RltPoint is created. The checks
against the quadtrees (both the local and global) can be considered O(nslogn;). After a RltPoint is
found or created ,it is added to the current iteration in RltPointCharting. The total computational

complexity of this part of the algorithm is:
*  O(n,) for the duplicate check enumeration
* +0O(ny) to create the quadtree of previous seen RltPoints
* + O(nslogn,) for every point to match against points in the quadtree

* 4+ O(nlogny) for every point to match against points in the global quadtree if the previous

check fails to find a match
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The computational complexity of the point matching is O(n;) + O(ns) + O(nslogns ) + O(nslogn)
with the worst case being global matching occurring for every point. The point matching is an
O(nslogny) algorithm provided the data structures used such as the hash table and quadtree do not

degrade.
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6.3 Map Creation

This section describes the process of generating a map given that all of the points are already

grouped together. The next section 6.4 Group Creation describes the group creation process.

Given a group of RItPoints, three points in the group are chosen as the basis of the relative
locations. Given this consistent basis it is possible to compute the relative distances between points for
each iteration that is translation and rotation invariant. This allows the average of the distances to be
valid regardless of the robot's changing viewpoint. If every group's relative map is combined, a global
map is created that is aligned to the first observations of the first group. This section introduces the

RlItGroup, RltGroupRef, and RItICP classes.

6.3.1 RItGroupRef

Each RltPoint can belong to multiple groups. In order to keep track of this, the RItPoint stores a
vector of RItGroupRef. A RltGroupRef stores a reference to the RltGroup it is linked to and the
relative location of the RItPoint in that RI1tGroup. This structure also contains a boolean flag which
specifies, if when the RItPoint is added to the RltGroup it is already grouped or not. This is described
later in 6.4 Group Creation but for now this flag is used to determine if the RItPoint can be used as part

of the ICP or not.

6.3.2 RItICP

This class performs an Iterative Closest Point between two sets of point clouds to determine the
transform to transform one of the point cloud's location to the other's. It requires a minimum of three
points to solve the transform. This version of the algorithm assumes the points in the two point clouds
are already matched together which they are guaranteed to be at this point. This allows only one pass
through the algorithm. The algorithm [BeMc92] first removes the mean from the two points clouds. It
then forms the covariance matrix between the two clouds and uses the Singular Value Decomposition
(SVD) to solve the rotation. The translation is then solved by rotating the second mean by the solved

rotation and subtracting from the first mean.
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6.3.3 RItGroup

The RlItGroup class stores a reference to every RltPoint that is contained in the group. When a
RlItPoint is matched against an untransformed point, it notifies every RltGroup it is linked in that there
is the potential of a new iteration to be used for its computation. The RltGroup updates its update
interval with the new iteration, and places itself on a list of RItGroups to be computed in the current

iteration.

The RltGroup is used slightly differently than the planar version of the algorithm. In this version
of the algorithm, a RItGroup only performs a computation if every RltPoint has a valid observation.
RItGroups also do not undergo any changes once they are constructed. If a change is required, the
RlItGroup is removed and a new one is added. This allows the RltPoint processing to be simple. Since
it can be assumed that the RItPoints inside of the RltGroup are always the same, it can safely store a
running average of each RltPoint's relative location in the group. It is also known that the three basis
points (Figure 109) never change and that any dynamic points are already removed during the group
creation. This eliminates the needs of a cache system to speed up computation or a system to save in

between calculations that are required in the planar version.
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Perspective
lteration 7

Map Error: 1.701

Figure 109: Illustration of the basis points of two groups. BO is the
(0,0,0) point B1 on the -x axis and B2 on the xz plane.

The main function in RltGroup is the ComputeRItGroup. The algorithm is as follows:

Determine if there is at least one RItPoint update for the current iteration by querying the update
interval structure. There might be a range of iterations if the group is created in the current

iteration.

For each iteration, obtain the untransformed point from every RltPoint in the group, and add to
its relative location average. If even one RltPoint is missing a point for the iteration, skip the

iteration. To calculate the average relative location:

* Form the transform matrix for the three basis points so that the first point is transformed
to (0,0,0) the second one transformed to being on the negative x axis and the third point
transformed so that it on the xz plane. This is shown in Figure 109. Note that after the
points are transformed into global coordinates the plane formed by the three points is no

longer aligned to the axes.

* Transform every point by the matrix. Add the x,y,z location to the average for that

point.
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¢ Add the iteration to the calculated on interval variable.

3. For each RltPoint, divide the total location difference by the amount of observations to obtain
the average. Place the average into the RItGroupRef structure from the RltPoint for this
RItGroup.

4. Perform the ICP to generate the global coordinates.

» Ifthe group is created at iteration 0, then use the RItPoint's first observations in one point

cloud and their relative position in the group in the other.

» Ifthe group is not created at iteration 0, it must have been created with at least a minimum
number of RltPoints from previous groups. Use those RltPoint's RItGroupRef for this
RItGroup in one point cloud and their global location in the other point cloud to solve the
ICP. Then for the remaining points use the matrix returned by the ICP to find their global
position. The RltPoints from the previous group do not have their global position

recalculated.

6.3.4 Summary

It is straight forward to find the relative location of the RItPoints inside of a group. In terms of
computation per iteration, first the transform matrix is found from the three basis points. Then for all
of the RItGroup's RltPoints, their untransformed observations for that iteration are transformed by the
transform matrix and then added to that points average relative location. This is an O(n,) operation.
The ICP takes O(ns) to form the covariance matrix and then O(1) to calculate the SVD. The algorithm
1s O(n;) + O(ns) + O(1), thus O(ns) as a worst case.

The main difference between the point and planar version of the relative algorithm is that the
planar version has extra logic due to the fact that the plane comparisons are pair wise. There is
additional logic in case the pairings are changed and to account for different calculation intervals for
each pair. For the point version the interval is the entire interval and any reassignments is taken care of

higher up in the architecture. This simplifies the RItGroup class.
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6.4 Group Creation

Since a robot's viewpoint moves and points enter and leave the view, groups are required to
organize points that are seen in the same time interval. How optimally the groups are created in terms
of maximizing the quantity of iterations in every group is crucial to the performance of this algorithm.
This section only covers the creation algorithm. The performance analysis is in a later section, 6.6.1
Odometry analysis in the figure eight simulation. This section describes the RltMapper, RltInterval
and RltUngroupedList classes.

6.4.1 RItinterval

A given RltPoint can be valid in different intervals, so the intervals are stored by start, end
iteration and run length. Each interval is stored in a vector inside of RltInterval. When a point is added
to a RItPoint the iteration is added to the RltInterval. To do this efficiently the RltInterval only allows
iterations to be added in sequence as to not have a search to find where the iteration is supposed to go

in the vector.

The main functionality of the RltInterval is used in the RItMapper when forming groups. There is
a function to calculate the number of untransformed points a RltPoint has in a given interval. It is
much quicker to reference the interval structure than to do a manual count of a RItPoint's

untransformed point circular array.

6.4.2 RItUngroupedList

The RItUngroupedList stores a list of RItPoints. When a RltPoint is newly created it is added to
this list. This list is then referenced in the group creation to see if any RltPoints are ungrouped. The
group creation is delayed slightly to allow for the RItPoint to accumulate untransformed points. The
RItUngroupedList is used in several places to allow for delayed processing on RltPoints. Having a list
structure hold RltPoints used for future processing rather than doing an enumeration over the main

RItPoint list keeps the relative algorithm only working on n; points rather than all of them.

The RltUngroupedList maintains a sorted list, so the group creation checks the earliest created
RlItPoint first. After a RltPoint is placed in a group that RItPoint is removed from the list. There is a

maintenance function to remove RltPoints that have not been able to be placed in groups after a certain

162



amount of time. Due to the potential removal of RItPoints, this data structure is the only one to use a
standard template library (STL) list. Most of the project was originally developed using STL lists but

then converted to STL vectors for performance reasons.

6.4.3 RItMapper

In addition to performing group creation, the RItMapper class performs much of the high level
functionality of the Relative Point algorithm. This class is used to perform the initializing of each
iteration which builds the matching quadtree. RltMapper is then used to add each new untransformed

point to the algorithm and either performs or calls other classes to do the remaining processing.

The class also contains the master storage vectors of RItPoints and RltGroups. Storing all the
RltPoints and RItGroups in a master list simplifies the architecture. If the RItPoints were only
referenced in RltGroups then when RltGroups are changed it would be difficult to figure out if the
RItPoint should be deleted or not. Having a master list allows for a garbage collection routine.

However currently there are no memory issues, so no garbage collection is performed.

Currently there are two types of groups that are created. The initial group is created after only a
few iterations and the final group is created after many iterations. Since the initial group is only
created after a few iterations it is not possible to determine the best points to include in it. The final
group is created after many iterations so that the previous points that are added maximize the amount of
iterations available for group processing. There is a look back constant that determines how many
iterations of untransformed planes a RltPoint has to contain to consider adding it to the group. The

group creation algorithm is:

1. Look at the ungrouped list to see if there are any RltPoints in it that have sufficient
untransformed points to be considered to be placed in a group. If there are no valid
RltPoints then exit. If there are valid RltPoints extract the first RItPoint. This RltPoint's

creation iteration is the iteration used in the rest of the algorithm.

2. Use RItPointCharting to form a list of all RItPoints that exist a look back amount of

iterations before and after the creation iteration.
3. For every RltPoint in this list that is already mapped:

* Find out the quantity of iterations in the interval between the creation iterations plus
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and minus the look back. Add this number to an array.

* After all of the RItPoints have been evaluated sort the mapped RItPoints by their

count of iterations in the interval.

* Create a previously mapped list out of the sorted list starting from the ones with the
highest total count. There is a minimum threshold for the iteration count. There is
also a maximum number of previous points constant and minimum number of
previous points constant. If the minimum is not met, remove the creation RItPoint
from the ungrouped list as it is determined that it is a not a good point to be added to

the map and exit.

4. Restart the RItPointCharting enumeration and enumerate every ungrouped point.

* Calculate the total number of iterations that is present in the interval from the

creation iteration to the creation iteration plus the look back.

* Sort the list and determine which ones should be added to the next list using a

threshold constant. The minimum is one and there is no maximum.

5. Combine the previously grouped list and the ungrouped list to one list and run the
dynamic bin checking as described later in 6.5.3 Dynamic point detection. Only

continue if there are sufficient non dynamic points.

6. Find the optimum three points to use as the basis when calculating the relative location

described in 6.5.4 Basis point optimizing.

7. Create a new group with the combine list. Label the RltPoints that are previously
grouped as such so that they are used with their globally mapped location for the ICP
calculation. Remove any ungrouped RltPoint from the ungrouped list that has been

added to a RltGroup.

6.4.4 Summary

The grouping algorithm works well given a range where it can look back and look forward. It is
possible to change this constant for accuracy purposes and there is analysis in 6.6.1 Odometry analysis

in the figure eight simulation. In terms of computationally efficiency:
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*  O(ny) for the point charting 6.2.3 RltPointCharting. If there are a large number of iterations it

has to look over, it would be considered O(n;I). However in this case I is set to a small amount.

*  O(nslogny) for the sorting of the RItPoints for both the previous grouped and ungrouped list. It
is likely that the n,is smaller than the RltPointChart enumeration so the sorting is not a

significant part of the the algorithm.

* The Dynamic point binning 6.5.3 Dynamic point detection is considered to be O(nsogns)
average case and O(n”) worse case. There is considerable analysis of its performance in that

section, and generally the dynamic point detection performs at O(nslogns) or better.

* Finding the basis points 6.5.4 Basis point optimizing is unoptimized at O(n,?) but since it has an
insignificant run time it is left this way. If thousands of points are in a single group this would

have to be optimized.

The grouping algorithm's computational complexity in the average case is hard to estimate. It is

demonstrated to be O(2ns) in Figure 141 in 6.6.2 Performance testing, which is still O(ny).
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6.5 Other Functionality

6.5.1 Global point matching

When the robot backtracks or completes a loop, previously mapped points are observed. First the
previously seen untransformed points are compared to the ones seen in the last few iterations. After a
match is not found the point is then compared to globally mapped RltPoints. This requires the
untransformed point to be first transformed using current position then compared to RltPoints stored in
the global location quadtree. If there is a match the untransformed point is added to the matching
RltPoint and will be correctly matched to that RItPoint in future iterations using the normal point

matching found in section 6.2 Registering Points.

At first this algorithm may seem O(nslogn,) with the use of 6.2.4 OVLPQuadTree. However if the
global quad tree is created the same way as the untransformed version in 6.2 Registering Points it will
require loading n,points every iteration, where n,is the total number of points on the map. If working
with n,is not improved upon then the global point matching will be be dominated by the O(n,)

initialization which is not desired.

The OVLPQuadTree is altered so that it is possible to add and remove RltPoints incrementally,
rather than creating a new global OVLPQuadTree every iteration. There is a higher overhead cost to
doing this but it is quickly overtaken by the larger cost of reconstructing the global OVLPQuadTree
with every iteration. This is shown in Figure 110 that shows the difference of computation time in
using the incremental versus the normal OVLPQuadTree. In the chart, the robot revisits the starting
point at about iteration 4000 and closes the loop and no new RltPoint are created after that. The figure
shows that provided new RItPoint are being added, the non incremental version computational time
increases linearly in time. In the simulation after the loop is closed the average run time is about Sms

of which the the non incremental versions initialization takes a noticeable percentage of this time.
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Performance difference of incremental quadtree
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Figure 110: Difference between the incremental and normal quadtree.

Negative means faster run time for the incremental quadtree

6.5.2 RItPoint merging

The global matching uses the nearest neighbours approach with a bounding constant. When an
untransformed point is very far away, a small angular difference can lead to the untransformed point
not being matched. It is possible to increase the bounding constant, but it is there to prevent points
from being globally matched to the wrong RltPoints. Another solution is to allow for merging. Using
the same RltUngroupedList as before, new RltPoints are evaluated after a constant amount of iterations
to see if their global locations match to another RItPoint. If they match, then the two can be merged.
The merge consists of copying all of the untransformed points of the newer RltPoint to the older one
and then telling the RItGroup to recompute over the copied interval range. In practice, after a few
iterations, RItPoints created with the same points are in nearly the same location and the merge seems

to work consistently.

There is an issue related to dynamic points. When a dynamic point is globally mapped, its

position changes as the point moves around. This may cause a false merge to occur. Currently this is
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not a big issue since the dynamic point will move on leaving the merged RltPoint to have about the
same average. In addition, the dynamic binning may remove the merged RitPoint. There may be a
way to avoid this by either having the merging take place after the dynamic check or having a roll back

mechanism to fix this issue.

Currently neither of these are implemented. There is a slightly larger error when there are
dynamic points however it is not known if this is due to merging or due to dynamic points getting
added to RltPoints for a few iteration when their paths intersects. It is not known if this will become an
issue when using real data. Real data may not contain dynamic points intersecting normal ones so for

now this issue is not pursued further.

6.5.3 Dynamic point detection

It is possible to add in at a low cost dynamic point detection to the algorithm. The goal of the
dynamic point detection algorithm is to detect which points in a group are static and which ones are
moving around or have a high standard deviation compared to the rest of the points. This would be a
simple problem if there is a stationary point as a reference. The stationary point can be used as a basis
and a dynamic check could be done in O(n) time comparing every point to the stationary one.
However without knowing which points are stationary and which are dynamic, without an optimized
algorithm the dynamic check would require O(n?) time. Every point would need to be compared
against every other point to figure out which ones are correlated. Of groups that are correlated, one
group, perhaps the largest has to be chosen as the static group. The algorithm used in the RItBinning
class uses an approximation of an O(n?) correlation for dynamic detection. The approximation is that
points that are correlated can be grouped or binned together and only one point in the bin has to be

compared against other bins for subsequent correlation computations.

The RItBinning class receives a list of RltPoints towards the end of the RltGroup creation. Its
goal is to use the stored untransformed planes over an iteration range to find out which RltPoints are
dynamic and which are not. Each RltPoint is compared in pairs to other RltPoints using the standard
deviation of the distance between their untransformed points over an iteration range. If the standard
deviation is higher than a threshold, then one of the RItPoints is dynamic. Ifit is lower, then the
RltPoints are considered to be correlated and the bins are combined. Every bin has a hash table of
every RltPoint that it has already been compared to, and this hash table is also merged when the bins

are combined. When every bin has been compared to every other bin then the algorithm is complete.
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If there is a log(n) number of bins compared to n RltPoints at the end of the computation, then the

algorithm is O(nlogn). If there are many uncorrelated points, then the algorithm degrades to O(n?).

There is a optimization that takes into account that the algorithm is only interested in finding the
bin with the most points. When one bin has a higher than a threshold percentage of the total points, the
pairwise comparisons can stop. Instead of continuing comparing every bin to each other, the bin with
the highest number of total point can be compared against every remaining bin. Any RltPoint that does

not belong into the highest total bin can be considered dynamic.

There is the question of how to chose the standard deviation threshold. Instead of doing this
manually with a constant, the threshold can be generated automatically at a low cost. The first round of
comparisons occurs normally until every pairs standard deviation is calculated. Then instead of
comparing against a threshold, a function is called to decide the threshold. The standard deviations are
sorted and then traversed from the lowest to the highest. When the difference between two standard
deviations exceeds a percentage and a constant value, the lower of those standard deviations is

determined to be the threshold.
The algorithm is as follows:

1 To start, place every RItPoint into a separate bin. The bin contains references to RItPoints
and a list and hash table of RltPoints that the bin has already been compared to. Place all

the bins into a valid list.

2 Perform pair wise comparisons until a finishing condition that either all valid bins have been

compared to all other valid bins, or one bins RltPoint count exceeds a threshold.
3 For each bin in the valid list, find another bin to compare to.

* Before comparing bins, check to see if the first RItPoint in the first bins RItPoint list has
already been compared to any RItPoint in the second bin. This is done by referencing

the hash table of the second bin with the index of first RItPoint.

» Ifit has already been compared to, keep on enumerating the valid list to find a
comparison pair. If no pair is available then this bin is done comparing and by not

adding it to next valid list it will not be used for comparisons in the following iteration

4 1If a bin is found, do the comparison between the first RItPoints of each bin
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* Find the end iterations of the comparison by looking at the intervals of each RltPoint.

Use the RltGroup creation iteration as the start of the comparison.

* For each iteration, obtain the untransformed point, calculate and save the distance and
add to the average distance. After the average is calculated, do another pass to calculate

the standard deviation.

» Ifthe threshold has not been calculated yet, exit at this point. The threshold calculation
function is then called. After the threshold is calculated the algorithm resumes at this

point.

* Ifthe standard deviation is below the threshold then merge the two bins and merge the

hash table. Set the second bin to being not valid.

» If the standard deviation is above the threshold, merge the hash tables so the bins or any

bins that merge with the two bins are not compared to each other again.
5 If the threshold has not been calculated, calculate the threshold by:
*  Querying the bin's saved standard deviation,
* Sort the saved standard deviations from lowest to highest.

* Enumerating from lowest to highest to pick a threshold after the difference in two

adjacent standard deviations are higher than a constant and percentage.

*  After the threshold is found go back and complete the RltPoint pair comparison function

for the first iteration.
6 Bins that have been compared to and successfully merged can be added to the next valid list.

7 At the end of the iteration, check to see if one bin has more RltPoints than the threshold. If
this is the case the binning can end after one more pass of comparing every remaining valid

bin that has not been compared to the highest bin, to the highest bin.

8 Copy the valid list from the next valid list and iterate again.

To evaluate the performance of the binning consider the best and worse cases. The best case is if

every RltPoint goes into one bin then the algorithm performs n-1 comparisons. If every RltPoint stays
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in its original bin the algorithm will require n*/2 comparisons. If there is a percentage of RltPoints that
are dynamic then the algorithm will be in between. The computation complexity between the best case
and worse case is displayed in Figure 111. This figure shows the total number of comparisons given

the number of points and percentage of points with a high standard deviation.

Sometimes the numbers especially on the lower percentage are not increasing at a consistent rate.
This is probably due to the clustering of the dynamic points versus the normal ones. Perhaps for some
runs the highest count bin gets larger quicker than others so that run executes with less comparisons.
Note that 90% line is inconsistent. What is happening is that in the 90% dynamic point test, the
function that finds the standard deviation threshold does not work correctly since the data feeding into
it does not contain enough low standard deviations. This causes the threshold to be set too high and all
RltPoints to be binned in the high group. This effect is also noticeable at lower percentage with a
smaller amount of points. Figure 112 Shows how many RltPoints per percentage are binned in the
highest bin. Clearly the 90% line in that figure is incorrect. In fact the 70% line is incorrect for 20 and
40 points but correct for 60 points and up. The 100% line is artificial as the binning would not work

due to the standard deviation being set too high so it is set as the worst case of n?/2.

Evaluating the run time of the binning algorithm
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Figure 111: Verifying the run time complexity of the binning algorithm
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Number of points in highest bin
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Figure 112: Number of points in highest bin
Evaluating the run time of the binning algorithm
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Figure 113: Evaluating the run time of the binning algorithm
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So the question is where is the binning algorithm O(nlogn) and where is it worse than that? In
Figure 113 it appears that there is the start of polynomial growth between the 20% and 30% line with

the 10% noise line being nearly identical to the O(nlogn) line.

Evaluating the run time of the binning algorithm
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Figure 114: Performance with 50% normal 10% noise and 4 bins of 10%

correlated noise

The 10% noise threshold is still approximately valid given correlated dynamic movement. This
can occur when a group of points are attributed to an object that is moving in the viewpoint. The
grouped points would have a high standard deviation compared to static points but they would have
correlated movement inside of the group. Since the standard deviation between these points would be
small they would be binned together causing the algorithm to complete faster. Figure 114 contains
some of the same data as Figure 111 with the addition of the “corr” line. This line consists of 50% of
the points belonging to the normal group, 10% being points that move with the viewpoint but have a
high standard deviation and 4 bins of 10% each representing 4 objects that are moving in the viewpoint.
While the correlation test has 50% of the points being considered as noise the fact that most of the end

up in a bin together speeds up the computation. The “corr” line tracks the 3nlogn line.

It would appear that the binning algorithm is approximately O(nlogn) given that a maximum of
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10% of points can belong to uncorrelated noise. It was thought that this was as good as the algorithm
can perform until a simple heuristic is used. Before the addition of the heuristic, in each iteration,
every bin gets to compare itself to another bin. The heuristic is to use a kind of priority queue to chose

which bins are used to do the comparisons.

Perhaps the best priority mechanism would be to use the quantity of RItPoint in each bins. Given
the current architecture of the algorithm, a simple method is used that has good results. The addition to

the algorithm are as follows:

* For every iteration other than the first, place all bins that have a positive comparison into the

first next valid list. Place all bins that have a negative comparison to the second next valid list.

* At the end of the iteration, combine the two lists into the main valid list, however copy all of the
first lists members before the second. It is important to combine the list rather than not using

the second list since members in the second list may have positive comparisons later.

* If there are any members in the first list, set an iteration stop flag to the number of points in the

first list. If the first list is empty, set the stop flag to the total amount of points.

* During the next iteration, end the comparisons after the stop flag is reached so only the
members of the first list are used to initiate comparisons. Note that points from the first list can
still be compared to points from second list. If the first list is empty, the entire second list is

used for the comparisons.
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Evaluation of binning with priority queue

800

700 /.

600 ////{
—— 0%

—=—10%
20%
30%

—x— 40%

300 / —e—nlogn
200 a / //
100 %///

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Number of Points

3
S

Comparisons
S
[=]
o

Figure 115: Performance of binning using priority queue

The performance improvement shown in Figure 115 using the priority heuristic is astounding.
The figure uses 50% as the maximum bin threshold. The 50% line cannot be shown since the 50%
threshold is not reached so the algorithm degrades to performing every pair wise comparison. Charting
the 50% line would make the rest of the lines hard to see. Notice that nearly every line is at or below
the O(nlogn) line. The 0% error line can be considered the O(n) line. Figure 116 examines the
threshold of the heuristic by charting lines between 40%-50% noise. It is not until the 47% line where

the algorithm becomes significantly worse than O(nlogn).

The binning algorithm can be considered O(nlogn) if the percentage of uncorrelated noise is a few
percentage points below the threshold for the highest bin. In terms of total computation time Figure
117 compares two runs of the algorithm one with binning and 3% noise and one without binning and
no noise. The linear trend line is near zero and the extra cost of binning is on average .048ms where
the algorithm run time is on average is 3.5ms. The total binning time is below 2% of the total

execution time.
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Evaluation of priority queue 50% threshold
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Figure 116: Evaluation of priority queue with a 50% threshold
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Figure 117: Extra computation cost of binning
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One potential improvement to dynamic point detection is to be continuously checking for
dynamic points rather than just check once at group creation time. Currently in the simulation either a
point is moving or it is not so this is not an issue. It may be possible to calculate standard deviations at
a low cost every iteration after computing the average relative positions. If a dynamic point is found it
can be removed from the group and if there are insufficient points the group will have to be recreated
with other points. If there are many RItPoint in the R1tGroup that suddenly have a high standard
deviation than the binning algorithm can be run again. Perhaps this feature could be implemented with
group creation auto tuning (discussed as future work in 6.5.5Group optimizations) to make the

algorithm more robust to changing conditions.

6.5.4 Basis point optimizing

When computing the relative location of a group, three points are used as the basis of the
computation (Figure 118). These three points have to be chosen carefully. If the three points are
collinear they will be missing a rotational component and will not be rotational invariant. As three
points approach being collinear, noise in the readings will cause the basis to degrade. It is important to

chose the three points well.

Perspective
lteration 7

Map Error: 1.701

Figure 118: Showing the basis points, this is the same picture as in Figure
109
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When developing the algorithm in stages, an early version of the algorithm placed the basis points
in order of arrival so the first three points added to the RItGroup would become the basis points. This
mostly worked with only occasionally there being three points that were collinear or close to being

collinear. It was observed those groups had inconsistent relative locations.
The algorithm used to chose the three basis points is as follows:

1. Find the two points that are furthest apart in the group by doing an O(n?) search comparing
every RltPoint to every other RltPoint.

2. Combine the two furthest points into a vector and do a O(n) search to find the point with the

largest distance to the vector. These three points are then assigned as the basis points.

The basis point algorithm is designed to find the three best points to be the basis. Unfortunately it
is also O(n?). However due to the group size and low amount of computation per comparison the
algorithm is not a significant amount of the processing time so it is left unoptimized. One possible
optimization would be to find the bounding box of the RItPoint in the group and then chose the
RlItPoint closest to the corners instead of doing the O(n*) search. This algorithm would run in O(n)

time but perhaps due to setup time may take longer with small groups.

Figure 119 shows the mapping error for the two basis point selection routines. The random
selection uses the first three points in the group as the basis points. The optimized selection has the
basis points chosen using the selection algorithm. The basis point optimization greatly reduces the

mapping error.
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Optimized vs Random Selection
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Figure 119: Comparing the mapping error of the basis point selection

6.5.5 Group optimizations

One of the largest issues of this algorithm is how to group together points that maximize the group
interval size that then minimizes the noise. Section 6.4 Group Creation describes the algorithm for the
group creation. This section elaborates on the details of the creation algorithm and charts the
performance of using different constant values in the algorithm. All testing is done on the figure eight

simulation seen in Figure 127, and Figure 128

When a RltPoint is first seen it is desirable to immediately place it in the map. The RltPoint is
placed in the RltUngroupedList which is referenced after a few iterations. At this point the RItPoint is
placed into a group. Due to only being able to look back a few iterations it is not possible to determine
the best previously grouped RltPoints to place into that group. The RltPoint is also placed in a second
RItUngroupedList with a much longer look back. When the RItPoint is enumerated from the second
list after sufficient iterations have passed, a much better R1tGroup is created. The previously grouped

points selected are more likely to be present in more iterations than the ones in the initial group. The
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RItGroups that are created are denoted as either being temporary groups created with a small look back
or final groups with a longer look back. Final groups only use previous grouped points that are also in
final groups. This means that as long as there are final groups, the overall accuracy of the map is

dependent only on RItPoint in the final groups.

Periodically the temporary RltGroups are checked to see if all of the RItPoints referenced in it
have been added to a final group. If this is the case, then the temporary RltGroup is redundant as it
does not have any information that is used for mapping purposes. In the simulation most temporary
RItGroups are removed, however there are a few that contain points that are judged as not being
suitable for a final group so they are left out. RltPoints that are only in a few iterations are not placed

in a final group so they do not affect the accuracy of the map.
There are several constants that may affect the performance of the group creation:

* The main constant is the look back / look ahead. This is the constant that determines how many
iterations to wait in order to add the RItPoint to a group. This allows the group creation to look

ahead or back this constant to look for points to place in the group.

* Accuracy Reduction. This constant determines the threshold for adding RltPoints to the
RItGroup. The threshold to add RltPoints to the new group is the look back constants minus the

accuracy reduction.

*  PrevGroupMin, NextGroupMin. These minimums determine the minimum amount of previous
grouped points that have to be available to form a group and the minimum amount of

ungrouped points that have to be available to form a group.
* PrevGroupMax. The maximum amount of previous points that can be added to a new group.

Since there are many constants to test, each one is tested individually to get an idea how it affects
the accuracy. All of the testing is this section is performed on the figure eight simulation where a full
loop is about 3800 iterations. Figure 120 shows the testing with the highlighted pink line belonging to
the baseline. Figure 121 relates the corresponding quantity of groups to the error. The base line has 60
look back / look ahead, 20 minimum previous group, 5 minimum next group, and 10 accuracy

reduction.

The mapping error is the sum of the absolute difference in distance between the actual point and

the globally mapped location given by RltPoints. The error is cumulative so that a single error early
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will carry on until the loop is closed. A single error appears over time as a line as the error propagates
forward. When the mapping error has more of an increasing curve this indicates that there is the
continued addition of mapping errors in that time iteration. It is also possible to have mapping errors in

offsetting direction that will reduce the propagation of errors.

Accuracy using different constants
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Figure 120: Accuracy using different constants
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Quantity of Groups
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Figure 121: Quantity of Groups
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Figure 122: Evaluating the accuracy of setting accuracy reduction to 1
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Figure 123: Group size with accuracy reduction set to 1
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The first question is what happens when the accuracy reduction is reduced from 10 to 1. This will
force smaller groups, as less ungrouped RltPoints will qualify to be in a RItGroup since they need to be
in nearly the complete group interval. Figure 122 and Figure 123 highlight with a thicker line the
affect of altering the accuracy reduction to 1. Notice that is does not have an affect on mapping error
but it does increase the number of groups which is expected. This is a bit surprising as the initial guess

was that less groups would correspond to higher accuracy.

Figure 124 illustrates the affect of increasing the look back / look ahead and altering the accuracy
reduction. The top line is when the look back has been increased to 90 from 60 and the accuracy
reduction increased to 20. The bottom highlighted line is with the look back / look ahead at 90 with the
accuracy reduction being at 10. It was a surprise that having a higher look back / look ahead causes
higher error than the baseline until a second loop of the figure eight is performed. Using 20 as the
accuracy reduction makes the error significantly worse despite having more iterations guaranteed to be

in the RltGroup.
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Figure 124: Highlighting higher look back / look ahead

184



After performing many tests, perhaps the best improvement comes from reducing the minimum
required amount of ungrouped RltPoints to be added to a group to 1. This is shown in Figure 125. This
makes intuitive sense. The grouping algorithm is always better off without a minimum size of new
ungrouped RltPoints since there is always a minimum previous grouped size which should guarantee
the accuracy of the RltGroup. Every fully mapped RltPoint can be said to increase the accuracy, rather

than leaving an RItPoint to only being mapped in a temporary group.

Accuracy using different constants
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Figure 126: 7 runs through the figure 8 with 3 different settings



To get greater clarity into the accuracy versus the constant values Figure 126 was created running
through the figure eight 7 times. All three lines use a minimum ungrouped RltPoint quantity of 1. One
line is the baseline of 60 iterations look back and a accuracy reduction of 10. One line is the baseline
with a 90 iteration look back / look ahead instead. One line is the baseline with a maximum of 50
previously grouped points added per new RltGroup rather than 20. These three lines are the lowest in

Figure 125.

After examining Figure 126 it was decided that it is not worthwhile to further evaluate constant
values versus mapping error. Perhaps the three chosen for Figure 126 are better than the ones not used

from Figure 125 but it is very difficult to judge which one is better.

Perhaps the overall issue is not with altering the constant values but rather, reducing the use of
constant values. The binning algorithm in 6.5.3 Dynamic point detection uses a routine to generate the
standard deviation threshold. The binning algorithm should be adaptable to different environments
without having to alter a constant value manually. Perhaps it would be better to have some routine that

is able to automatically adjust the constant values as the robot explorers a new area.
One potential algorithm to create a Rl1tGroup without constants is as follows:
1. Wait until a creation RItPoint is no longer visible before adding it to a final group.

2. Given the creation RltPoint start and end interval, find all points that are present and put
them into sorted lists. One list has points that are already in a final group and the other of
points not in a final group. These lists are sorted by the amount of iterations present in the

observation interval of the creation RItPoint.

3. Add the three best already final grouped RltPoints and the creation RItPoint to the new
group.
4. Keep on adding RItPoints obtained from the descending order of both sorted lists as long

as the total amount of iterations goes up.

* To check if a RItPoint should be added: perform an “and” operation of its observation

interval with the current observation interval of the new group.

*  Multiply the total iterations in the new observation interval by the number of points in

the group plus one.
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* If the new total iteration is larger than the previous, add the RltPoint to the group and

copy over the new observation interval.
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6.6 Examining the odometry and run time performance

6.6.1 Odometry analysis in the figure eight simulation

The figure eight simulation used in the previous section 6.5.5 Group optimizations was tested
again. The results of the simulation are shown in Figure 127 and Figure 128 from two view points.
The robot travels in a figure eight path starting at the middle and going to the bottom right. The robot
travels up a gradual incline which reaches its peak at the starting point and then starts to decline. When
the robot returns to the starting point after completing the right side loop it is above the original starting

point and does not close the loop until it completes the loop on the left side.

There are a total of 1795 RltPoint in the simulation and about 1250 groups. Only 249 of those
groups are final groups and the ones used to propagate the map. There are many groups since as
discussed in 6.5.5 Group optimizations, RltPoints that are spaced more than 10 iterations apart get

placed into their own groups. A single loop of the figure eight is about 3800 iterations.

Perspective

lteration 4001Map Error: 571.222

Figure 127: Figure eight top view. Every group has its own color of lines to each point

from the centroid of the group.
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Figure 128: Figure eight side view

Figure 129: Figure eight close up
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Figure 129 shows a close up of the figure eight. Green boxes represent the global location of
RltPoints. If the number beside the box is in black then that RItPoint is fully mapped. Ifit is red it is
only temporarily mapped. Each RltPoint has a line to each RltGroup it is linked to. The lines are from
the global location of the RItPoint to the centroid of the RItGroup. The centroid has no functionality
other than rendering. The color assignment of each line is based on the group it is a member of. The
groups are labeled Gnnn where nnn is its index number with the text being black for a final RItGroup

and in red for a temporary group.

Mapping errors can come from three places: noise with less than infinite iterations, frustum bias
and algorithm inefficiency. Depending on the noise and the quantity of iterations there will likely
always be a small error. This can be seen in Figure 152: Stationary viewpoint landmark error, which
tests the EKF versus the relative algorithm with landmark noise given a stationary position. These

small errors can accumulate on the map to create a bias and become noticeable.

There are errors due to the frustum. Some of the earlier testing had the robot have a steadily
increasing y error in one direction. It was not obvious what was causing it, especially since the robot's
path was set without changes in the y direction. The algorithms is 6D so there is not anything that

would appear to only cause a bias in one direction.

It turned out the error was due to points being generated from y being zero to a height constant
and the frustum was from a negative height to positive height. When the points at the top of the
frustum had positive y noise they left the frustum causing the RItGroup to not be recalculated in that
iteration. If a point at the bottom of the range had noise in the negative direction it would still be in the
frustum. This led to a steady downwards bias as more noise in the negative y direction would get
computed than from the positive y direction. When the point generation was balanced using a negative
to positive height constant the problem went away. Frustum bias can still occur during turns when the

frustum travels in one rotation direction.

The third place for error could be error caused by the algorithm itself. Since RltGroups discretize
which iterations are used to calculate a RItPoint global position this can perhaps cause errors. There is
the possibility that any discretization error can be made worse if the RltGroups are created inefficiently.
This can happen if groups have misplaced RItPoints that cause too small of a calculation interval.
There is a chance that using three points as a basis can cause noise, as the noise in these points may

translate into noise in other points.
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To try to get an idea where the noise is coming from Figure 130, Figure 131, Figure 132, Figure
133, Figure 134, and Figure 135 display the error in each of the x,y,z direction corresponding to robot's
location. Each full loop of the figure eight occurs at about 3800 iterations. In the simulation used, the
robot is always within the bounds for the loop to be closed automatically so the error goes to zero. The

total length of a loop is about 1145 units.

It is interesting to see how the error is periodic especially during changing in direction of travel.
This can relate to the fact that there is bias in the noise during turns due the frustum removing noise in
one direction of rotation. Also during turns there is often less RItPoint available to form groups so that
may be a source. It can not be said for certain how much of the error is due to the frustum issue versus
the other two sources but it can be said that it is likely that there is a limit of accuracy due to these

issues.

It is not going to be possible to compare the output of the Relative algorithm against a map that is
optimally created having the minimum amount of landmark error given noise. Instead in order to
evaluate the accuracy of the Relative Point algorithm further it is compared against a 6D Extended
Kalman Filter (EKF) in 6.7 Comparison with the EKF in simulation. The Kalman filter does not
discretize the map according to groups and has a different basis, the current location. If the Relative
algorithm has much larger landmark noise than the EKF then it can be said that the Relative algorithm
is the cause of the difference of landmark error from the EKF's result. However if the landmark error is
similar for both algorithms that would seem to imply that the error is inherent to the map due to the

noise.
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6.6.2 Performance testing

This section evaluates the execution speed of the algorithm. The first test is to see if the algorithm
execution time increases as it continues to explore new areas. Figure 136 shows the execution time as
the robot does a figure eight of about twice the size of the previous testing. Figure 136 excludes the
first 200 iterations since the run time is near zero for the first iterations and it distorts the chart. The

execution time uses a 12 iteration moving average to make it easier to read.

The execution time linear regression is flat. There are currently no parts of the algorithm that use
global processing and work on anything except RltPoints and RltGroups that are recently seen. It

would be very evident if any parts of the algorithm were using global processing as seen in Figure 110

in 6.5.1 Global point matching.
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Figure 136: Execution time
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Figure 137: Testing the linearity of point density
The next test evaluates the effect of increasing the amount of points in the simulation. The
point density is increased in the figure eight simulation from 100 points per 100 units of path length to
400 points per 100 units of path length. The step size is 50 point per 100 units. The results are shown

in Figure 137. At first the run time is identical to O(nlogn) but then it has an polynomial component.

In order to further evaluate the algorithm, the execution time for each component of the algorithm

is charted. This consists of.

¢ The initialization. Points are enumerated from what is observed in the last few iterations from

6.2.3 RItPointCharting and added to the 6.2.4 OVLPQuadTree.

* Load Time: Points are added by first comparing them to the local quadtree 6.2.4
OVLPQuadTree and then the global. New RltPoints are created in this step.

* The RltGroups are computed 6.3.3 RltGroup and combined with 6.3.2 RItICP to generate a

map.

* New RltGroups are created 6.4 Group Creation, and 6.5.3 Dynamic point detection is

performed
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Each of these four are charted in Figure 138, Figure 139, Figure 140, and Figure 141.
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Figure 138: Initialization time
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Figure 139: Point comparison (load time)
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Figure 141: RItGroup creation time
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* Figure 138 shows the initialization time is O(n)
* Figure 139 shows the point comparison is O(n?).

* Figure 140 shows the RltGroup calculation time to be better than O(n). As the point density
increases, the group per point ratio increase which lesson the amount of time performing ICP,

thus lowering execution time.

* Figure 141 Shows the group creation time at about O(2n). It is compared to both a linear and
polynomial regression and appears to be linear. The creation included both the RItPoint search

for RltPoints that belong in the group and the binning algorithm.
* Figure 142 Shows the percentage breakdown of each of the parts

Figure 139 shows the load time is the only part of the algorithm that is not O(n). To verify that it
is responsible for the polynomial part in Figure 137 the difference between the O(n) line and the actual
line is plotted for both the total execution time and the point addition execution time. Figure 143

shows the point addition is responsible for all or nearly all of the polynomial behaviour.
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Figure 142: Execution time percentages
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Where the gap comes from
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Figure 143: Almost the entire non O(n) part of the algorithm comes from the adding
points part

Figure 144 shows the same test being performed, this time with the quadtree having smaller bins.
It is compared to the data from Figure 137, nlogn lines for each data set and polynomial regression for
each data set. The quad size is reduced on the local quadtree to near the minimum size given the noise.

The computation time is still slightly polynomial as shown by the polynomial regression but it is an

improvement.

There are other structures to consider octree [Wikilla] and kd-tree [Wikil1b]. Both were
attempted and using the octree it was found that the load time sees an improvement but the
initialization time is slower. The octree has to search 3 times as many bins on the initialization as the
quadtree does. A kd-tree was also tested. The kd-tree was found to be slower at both initialization and
adding points in both the 100 and 400 point density. The kd-tree creation is unoptimized using a full
sort to find the median, however that should insure that the tree is well balanced for the search. Even if

the kd-tree creation can be improved, the search cannot be optimized further so the other two data

structures are better choices.
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Figure 144: Comparison of using small quads

In Figure 145 an octree is used from the second 400 (there are two entries at 400 the first is the
last quadtree test the second is the first octree test) to 550 which is near the maximum given the noise
and point spacing. At the 400 density the octree takes on average 7.8ms to initialize which is about 3
times larger than the quadtree's 2.5ms. The load time using the quadtree is 4.5ms and 1.3ms using the
octree. The octree charts between the trend lines of n and nlogn showing that the octree is has a

reduced logn O(nlogn).

The point of combining them is to demonstrate that even near the maximum point density given
the noise and matching bound, the execution time can still be considered approximately O(nslogn;).
This depends on the proper selection of the data structure used for point matching. There is a tradeoff
of computation complexity versus actual execution speed. The Relative algorithm can be considered
worse case O(n;logn,) where n; is the amount of observable points that is a subdivision of the total

points on the map.
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Figure 145: Comparison of using small quads and octree replacement at 400

6.6.3 Summary

In terms of accuracy there are three sources of noise: small errors accumulating due to the finite
number of iterations, frustum bias during turns and inefficiency in the algorithm. 6.5.5 Group
optimizations looks at landmark error in regards to group creation optimization but did not come to any
conclusions given Figure 126 illustrates that it is not clear how to optimize the selection of the group
creation constants. 6.6.1 Odometry analysis in the figure eight simulation closely looks at the
odometry and finds that the errors in odometery are correlated with the robot changing direction. It can
be said that given the raw data of the simulation there is a limit to how accurate the map can be made.
It may be difficult to quantify how well this algorithm performs against the theoretical limit. However,
it is possible to compare the Relative Point algorithm to an implementation of the EKF to get an idea if
the source of error is the Relative Point algorithm or from the data. This comparison is in the next

section 6.7 Comparison with the EKF in simulation.
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It terms of computation complexity two scenarios are tested. The first is seeing if the algorithm
shows a degradation in speed as the total number of points in the map increase. Figure 136 shows that
the algorithm does not have any increase in computation as the total number of points in the map
increase. Every part of the algorithm is designed to work with only the points that are viewable in the

current iteration and as such this result is no surprise.

In terms of increasing the point density, there are several factors discussed that would cause the
execution speed to degrade: the quadtree, the binning and the basis point optimization. As shown in
Figure 143, the quadtree is the one responsible for the small polynomial growth. Figure 145 shows the
polynomial growth can be eliminated with the proper choice of the spatial subdivision data structure
used for the point matching. Provided the data structures are correctly tuned, the Relative algorithm

can be considered O(nslogn;) as a worse case where n; is the amount of observable points.

There is one more observation that is interesting to discuss. If the minimum required computation
per iteration is to register every observed point, what is the minimum computation required to do this?
The minimum would require a transformation step, a comparison step, and some sort of average or
correlation step. Either the point needs to be transformed to its assumed global coordinates to be
matched, or the untransformed point is used and the transformation occurs later. The point needs to be
compared against possible matches and once matched need to be integrated to the map. This analysis

does not look at adding new points or groups.

The Relative algorithm first performs the matching step using the untransformed point. Then
when computing the relative map of a group, each point is transformed using the basis transformation
and then averaged. ICP is used to compute the transformation to global coordinates which is then
applied. It may be possible to avoid the second ICP transformation if the three basis points are already
in global coordinates at the potential cost of accuracy. One computation that is unavoidable is that due
to RltPoints belonging to multiple R1tGroups the same processing may occur more than once on a

given RltPoint.

The Relative algorithm performs its minimum computation at approximately 65% of its total
average run time as shown in Figure 142. The rest of the run time is the group creation and the
dynamic point detection. It is interesting to note that the computation of the Relative algorithm can be

related to the minimum amount of computation required to do a SLAM algorithm.

203



6.7 Comparison with the EKF in simulation

The Relative Point SLAM algorithm is capable of 6D SLAM. 6D means there are no restrictions
on movement in the (x,y,z) directions or the three rotations. It also does not use odometry. The only
requirement is that at least 3 points are visible at all times. The previous chapter examines accuracy
and notes where potential error may occur, but it is unclear how close the accuracy of the Relative

Point algorithm is to the minimum amount of error, given the input data.

To verify that the accuracy is reasonable compared to other algorithms, a 6D EKF SLAM
described in [Blan08] is integrated into the simulation and tested. The 6D EKF implementation has
the option not to use any odometry so the comparison should be valid as they use the same data. The
two algorithms are compared in a figure eight, straight line, and with dynamic points simulations. The
noise used when evaluating the figure eight and straight line test is white Gaussian noise which is ideal

for an EKF [ThBF06].

The 6D EKF-based SLAM is obtained from the Mobile Robot Programming Toolkit [Mrptl1] .
The algorithm is integrated into the simulation the Relative Point algorithm uses. There are several

options in its configuration file.

¢ Method: there are two methods Full EKF and EKF 'a la' Davison which is more efficient. Both
were tested and the Davison method is found to be much faster which is noted in the paper and

more accurate so it is used.
* force ignore odometry: is set to true so the odometry that is sent into the function is not used.

* There are three options for the sensor model. These are looked at experimentally and values are

found that minimized the landmark error are chosen.
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6.7.1 Figure eight tests

The robot is tested on the figure eight simulation used in the earlier section for performance
testing. The point density is reduced from 100 points per 100 unit length to 25 due to the EKF's
computation complexity. Figure 146, Figure 147, Figure 148, and Figure 149 show the result. It is
interesting to see in Figure 146 how both algorithms have error increases that occur at about the same
time. It is not feasible to do a full figure eight since the EKF algorithm's in Figure 148 run time
becomes over a second an iteration and only getting larger. The average run time of the Relative

algorithm is about 1 ms in the simulation.
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Figure 146: Figure eight landmark error
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Figure eight position error
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Figure 147: Figure eight position error
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Figure eight runtime
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Figure 148: Figure eight run time. The Relative Point algorithm's run time

average is 1 ms so it is hard to see.
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6.7.2 Straight line test

The next test is the straight line test. Since there are no turns, the errors on the map cannot be

attributed to frustum bias. Either the error is from an inherent noise bias or algorithm inefficiency.

Landmark error straight line test

70
®0 M ]N
50 -
. 40
5 ) ’_,_‘_,—r rit
’ M
i W
0
-~ 90} To] N [} — (42} Tp] N~ [©) I ™ Te] N~ [e)] ~— (a2} Tp] N
e} o To] o o «© ~— © N N N N [ce] ™ ™
— — N N ™ ™ < < 0 Te} © © [ [ o oo [e))
Iteration

Figure 150: Landmark error in straight line test

Figure 150 and Figure 151 show the result of the straight line test. The error is very similar

except for two single errors that cause the total error of the EKF to go up.

It is interesting to see the landmark error as the robot stays stationary for a long period of time.
This is shown in Figure 152. The very slow convergence is likely due to the fact that the landmark
errors offset each other when looking at position error. However, to have zero landmark error every
landmark needs to receive the offsetting noise to be balanced. In addition the noise in every landmark

must also be balanced at exactly the same time for there to be a zero landmark error.
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Figure 151: Position error in straight line test
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Figure 152: Stationary viewpoint landmark error
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6.7.3 Dynamic point testing

It is known that the EKF does not have a mechanism to deal with dynamic points. But for the
sake of completeness the figure eight simulation is tested using dynamic points. Figure 154, Figure
153, Figure 155, and Figure 156 show a sequence where two points that are dynamic causes the EKF to

lose position and fail. The landmark error stopped working since it uses the nearest neighbour and the

tracking was lost. The red robot is the estimated position and the blue robot is the actual position.

Figure 154: Dynamic error 1 Figure 153: Dynamic error 2

Figure 155: Dynamic error 3 Figure 156: Dynamic error 4
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The same sequence is run with the Relative Algorithm Figure 157, Figure 158, Figure 159, Figure
160, Figure 161, and Figure 164. The points as shown in Figure 157 that are dynamic are points 24 and
18. Notice in Figure 159, right before the final group creation and the binning algorithm, the landmark
error is high. However the robots position is approximately correct as the current position is far less
affected by noise than the EKF which uses current position as a cumulative state. In Figure 159 the
binning algorithm is run and the dynamic points are identified. Notice that points 24 and 18 are in
green text which signifies that it is dynamic. Figure 161 has the new landmark error update and the
error is down significantly from 16.414 in the previous iteration to 1.841. Figure 164 shows the
algorithm at about the same time as the EKF dynamic point test shown in Figure 156.

It is known that the EKF is susceptible to dynamic points: from [BaDu06] “The problem is that a
single incorrect data association can induce divergence into the map estimate, often causing

catastrophic failure of the localisation algorithm.”
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Figure 157: Dynamic detection 1 Figure 158: Dynamic detection 2

Figure 160: Dynamic detection 3 Figure 159: Dynamic detection 4

Figure 161: Dynamic detection 5 Figure 162: Dynamic detection 6
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6.7.4 Summary

The purpose of this section is not to rank the EKF versus the Relative algorithm. It is too early to
tell in general which algorithm is more accurate, due to the limited testing and the usage of only a
single implementation of the EKF algorithm. The purpose is to provide a baseline of mapping error to
determine the probable cause of the mapping error in the Relative algorithm. Since the mapping errors

are comparable, the landmark error will be further explored in the next section 6.9.

It is known that a regular EKF implementation suffers from a polynomial computational
complexity. There are many implementations that use sub maps such as [PaTNO8] which can perform
in O(n) time or even O(logn) [DaLe09]. It is likely that the Relative algorithm compares favourably to
other algorithms. This is due to the Relative Point algorithm's computation complexity not being
related to total points on the map rather the average count of points being observed, and its millisecond

computation time.
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6.8 Comparison to the EKF using the Victoria Park data set

One of the standard data sets used to test SLAM algorithms is the Victoria Park data set. The
Victoria Park data set contains many iterations with less than four points. The relative point algorithm
requires 3-4 points visible so it is unable to use this data set without the use of a motion model.
However, there are two intervals that have four or more points and those intervals can be evaluated.
The results are compared to [PiPa08]. The two intervals are from iteration 1181 to 1642 and from
iteration 4220 to 4634.

The results of iterations 1181 to 1642 are shown in Figure 163 and Figure 164. Figure 164 shows

the same landmark locations given in Figure 163 manually stretched over the results from [PiPa08].

Figure 163: Results of the relative algorithm form iteration 1181 to 1642
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Figure 164: Results of the relative algorithm from iterations 1181 to 1642.
The relative algorithm's landmark locations are shown by the blue squares.

The results given by [PiPa08] are shown by the yellow circles.
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The results of iterations 4220 to 4634 are shown in Figure 165 and Figure 166. Figure 166 shows

the same landmark locations given in Figure 165 manually stretched over the results from [PiPa08].

The results are generally consistent with [PiPa08]. The full Victoria Park data set is 7249

iterations so the relative algorithm performs well given only a portion of the data set.

Evaluating the computation time: if only one level of grouping is used, the average time per
iteration is 0.000296 seconds. If a second level of grouping with dynamic detection is used, the
average time per iteration is 0.0004. If a third grouping which is formed after a point is no longer
visible is used, the average time is 0.00057 seconds. Multiplying the averages by 7249 gives a total of

2.15 seconds, 2.9 seconds, and 4.13 seconds.

Figure 165: Results of the relative algorithm from iterations 4220 to 4634
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Figure 166: Results of the relative algorithm from iterations 4220 to 4634.

The relative algorithm's landmark locations are shown by the blue squares.

The results given by [PiPa08] are shown by the yellow circles.
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6.9 Forty loops through the figure eight

Figure 152, stationary viewpoint landmark error, is interesting as it shows the landmark error
steadily decreasing to zero. If error can be shown to approach zero by having the robot stay stationary,
will the error approach zero after many loops through the figure eight simulation? For this test, the
robot traverses the figure eight about 40 times without any dynamic points. Dynamic points are not

used since the dynamic points may cross normal ones and may create a bias.
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Figure 167: Landmark accuracy of 40 runs

Figure 167 appears similar to Figure 152. Since the landmark error is decreasing slowly perhaps
it is balanced in that the position error is near zero. Figure 168 shows the position error for the 40
loops. The position error will never be zero since the noise in a single iteration will always cause
some sort of error. It does appear periodic though, so perhaps looking at the x, y and z position error
will be helpful.

218



Position Error

Distance error‘

——
—_—
——

1280014"
qocel
oevel
L0911
8.1/01
6166
0cL6
1628
2oL
€€99
089
ql6v
vy
llee
881¢
6991
0e8

| —

I T
¥~ 84 - ® © ¥ o o
-~ o o o o

few ui (zy(uonisod 3sa - uonisod))ubs Joug

Iteration / 10

Figure 168: Position error of 40 runs
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error in x direction

position error in x direction

—X error

—— 100 per. Mov. Aw. (x error)

Iteration / 10

Figure 169: Error in x direction of 40 loops
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Figure 171: Error in z direction of 40 loops

Figure 169, Figure 170, and Figure 171 show the x,y, and z error for the 40 simulation loops.
Each loop is about 3800 iterations with only every tenth iteration being plotted on the chart due to
limits in the charting software. It is clear that the errors are periodic with some random but decreasing
amplitude. Towards the middle of the charts the amplitude stabilizes. It is not clear where the error
comes from but due to the slope of the error being constant it is likely only occurring during a turn and
propagating forward. The error might be from the Relative algorithm or it might be from a bias in the

environment used in the simulation.
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6.10 Comparison of the two relative algorithms

The Relative Point algorithm's architecture is designed with the benefit of knowledge gained from

implementing the Relative Plane algorithm. The improvements are:

* Rather than compare current observations of untransformed planes against previous ones
from the current RItXPoint, untransformed points are compared against all previously
viewable RItPoint stored in RItPointCharting. This solves some issues with maintaining

the best current RItXPoint.

* There is no linking of RltGroups (RItXPoints) as they are soft linked together using the
RlItGroupRef structure. This allows any changes of RltGroups to happen without breaking

any links. Any changes to past data can be safely done without requiring a roll back.

* The reordering is properly done in the way RltGroups are put together. Many issues with

RltPlanes not being in a large enough intervals are settled.

*  Much of the complexity is taken out of the RItGroups, in that all of the high level
processing is done by RltMapper. If there are issues with changing groupings, a new
RlItGroup is created. Since the groups are static, it is possible to save the average relative

location per RltPoint. This acts as both the cache system and the save system.
* The algorithm is now full 6D rather than just 2’2D.

The Relative Plane algorithm took considerably more code and implementation time than the
Relative Point algorithm. Most of the extra work is due to the complexity of identifying which planes
are growing and shrinking. There would be improvements in reimplementing the Relative Plane
algorithm, but much of the extra complexity would likely remain. This extra complexity is why the
Relative Plane algorithm's description is broken into three sections with 72 pages (without counting

4.2), while it only takes 37 pages to describe the Relative Point algorithm

It is also curious to note that in regards to the “Second System Effect”, the Relative Point
algorithm seems to be implemented approximately correct considering it is the second Relative
algorithm. Of course, this cannot be confirmed without seeing what the third implementation would

look like.
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6.11 Summary

The Relative Point algorithm matches points to the previous iterations untransformed
observations. All of the iterations of a single point instance are stored in a data structure, the RItPoint.
RltPoints are grouped together in RltGroups based on observation interval. To create a relative map, a
RItGroup calculates the average untransformed relative point locations, using every iteration all of the
RlItPoints are observed together. Three points in the group are used as the basis for rotational and
translation invariance. Common points between groups are used to performed an ICP to join groups
together to form a global map. The only requirement of the algorithm is that three points are visible at

all times.

The Relative Point algorithm has a worst case computation complexity of O(nslogn,) where nyis a
subdivision of the total points in the map. nsis the average quantity of points visible at the same time.
The computational complexity is dependent on the data structures used, in particular the structure used
to do the point matching. It is important to tune the quadtree or octree so that it maintains its O(nlogn)
computation complexity. The average computation time of the 550 points per 100 units figure eight
simulation is 18 ms per iteration, where there is an average of 537 points per observation and 8980 total

points on an AMD 64 3400+.

The accuracy of the Relative Point algorithm is compared to a 6D EKF implementation that does
not use odometery. The accuracy of the relative algorithm is shown to be comparable to the EKF. It is
too early to tell in general which algorithm is more accurate, due to the limited testing and the usage of

only a single implementation of the EKF algorithm.

The accuracy of the Relative Point algorithm is also evaluated by having the robot loop through
the same figure eight many times to see if the error approaches zero. After many runs it appears to be
reduced to having a small bias. It is not known if this bias is due to the algorithm or due to bias in the

noise in the environment.

223



Chapter 7 Conclusion

This path taken to arrive at this point is an interesting one. The original intent is to implement a
full vision system that can produce accurate maps in an indoor office environment. This thesis follows
a previous project in indoor environments that is successful but limited. One of the issues with the
previous project is the inaccuracy of the robots position after a turn. It is this issue that posed the
hallway problem. If the robot is traveling down a hallway where the wall at the end is at a known angle
to the current hallway, why cannot the orientation of the robot be trivially computed after the turn?
This led to the use of planes, which store orientation that should inherently solve the problem.

This thesis started by repeating the design process of the previous work by producing a 3D
simulation, the robot design and the FPGA design. Each worked individually but could not be
integrated into a full project which came as a surprise due to how well the integration worked in the
previous project. This is a textbook example of the “second system effect” discussed in software

engineering literature.

What may be considered a failure, led to the focus of the thesis on Relative algorithms. There are
several attempts in this thesis of SLAM algorithms using planes as the primitive and storing as much
data as possible. These attempts had the misguided intention that the key to the algorithm was to
reduce error in position as much as possible and modeling plane growing and shrinking as noise.
Finally the Relative Plane algorithm is created that is based on maintaining the relative relationships of
planes without regards to maintaining the current position. Position is only generated by corresponding

an iteration readings to a map, and only used locally for backtracking and globally for closing the loop.

The fact that the Relative Plane algorithm compares planes in pairs led to the solution of the
planes growing and shrinking problem. By using the top two corner points, assumed midpoints can be
created using the maximum size of the plane. When comparing two planes, the assumed midpoints can
be used creating four comparison pairs. The pair with the lowest standard deviation identifies the static

edges of the two planes.

The Relative Plane algorithm also has a good solution for when only one partial plane is visible.
With only one partial plane, it is shown that it is only important to track how the plane expands. The
position of the partial plane is previously calculated when it was seen in the past with the other planes

in its grouping. This solves the initial question posed of the hallway problem.
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After the completion of the implementation of the Relative Plane algorithm, there was an
interesting observation. The goal of the Relative Plane algorithm is to accurately map a planar
environment and to do this, it is required to identify planes that are growing and shrinking. The
Relative Plane algorithm is able to both filter out noise and identify dynamic edges of planes. The
dynamic edge detection comes at a small computation cost and is inherent in the architecture of the
algorithm.

It became evident that if the Relative Plane algorithm can both handle noise and some dynamic
movement perhaps it can do something similar using points as the input. The Relative Point algorithm
uses the Relative Plane algorithm as a template to implement a Relative algorithm using points. The
Relative Point algorithm is shown to have a worst case computation complexity of O(n;logns). nyis the
average quantity of points observed in a given observation, that is, a subdivision of the total quantity of
points on the map. The Relative Point algorithm is able identify points with movement not correlated
to the viewpoint at a low cost. It is compared against an implementation of a 6D no odometry EKF and

is shown to have similar accuracy.

After thorough testing it is not clear if the errors in the algorithm are inherent to the algorithm, or
inherent in the input data.. There is the potential drawback that the landmark comparisons are
discretized into groups. It is clear though, given data with dynamic features such as dynamic edges on
planes or dynamic movement in points and a requirement of real time processing, using a Relative

algorithm can be a good solution.
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